The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the nonself-adjoint Sturm–Liouville operator (or one-dimensional time-independent Schrödinger operator) with discontinuity conditions on the positive half line. In this study, the spectral singularities and the eigenvalues are investigated and it is proved that this problem has a nite number of spectral singularities and eigenvalues with nite multiplicities under two additional conditions. Moreover, we determine the principal functions with respect to the eigenvalues and the spectral singularities of this operator.
@article{EMJ_2024_15_3_a5,
     author = {N. P. Kosar and O. Akcay},
     title = {The spectrum and principal functions of a nonself-adjoint {Sturm--Liouville} operator with discontinuity conditions},
     journal = {Eurasian mathematical journal},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/}
}
TY  - JOUR
AU  - N. P. Kosar
AU  - O. Akcay
TI  - The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 55
EP  - 67
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/
LA  - en
ID  - EMJ_2024_15_3_a5
ER  - 
%0 Journal Article
%A N. P. Kosar
%A O. Akcay
%T The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions
%J Eurasian mathematical journal
%D 2024
%P 55-67
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/
%G en
%F EMJ_2024_15_3_a5
N. P. Kosar; O. Akcay. The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 55-67. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/

[1] M. Advar, A. Akbulut, “Non-self-adjoint boundary-value problem with discontinuous density function”, Math. Methods Appl. Sci., 33:11 (2010), 1306–1316 | DOI

[2] M. Advar, E. Bairamov, “Spectral singularities of the nonhomogenous Sturm–Liouville equations”, Appl. Math. Lett., 15 (2002), 825–832 | DOI

[3] E. Bairamov, I. Erdal, S. Yardimci, “Spectral properties of an impulsive Sturm–Liouville operator”, J. Inequal. Appl., 2018:191 (2018) | DOI

[4] E. Bairamov, E. K. Arpat, G. Mutlu, “Spectral properties of non-selfadjoint Sturm–Liouville operator with operator coefficient”, J. Math. Anal. Appl., 456:1 (2017), 293–306 | DOI

[5] E. Bairamov, N. Yokus, “Spectral singularities of Sturm–Liouville problems with eigenvalue-dependent boundary conditions”, Abstr. Appl. Anal., 2009, 289596, 8 pp. | DOI

[6] E. Bairamov O. Cakar, A. M. Krall, “Spectrum and spectral singularities of a quadratic pencil of a Schrodinger operator with a general boundary condition”, J. Differential Equations, 151 (1999), 252–267 | DOI

[7] E. P. Dolzhenko, “Boundary value uniqueness theorems for analytic functions”, Math. Notes, 26 (1979), 437–442 | DOI

[8] M. G. Gasymov, F. G. Maksudov, “The principal part of the resolvent of non-selfadjoint operators in neighborhood of spectral singularities”, Funct. Anal. Appl., 6 (1972), 185–192 | DOI

[9] H. M. Huseynov, J. A. Osmanova, “On Jost solution of Sturm–Liouville equation with discontinuity conditions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci., 27:1 (2007), 63–70

[10] A. M. Krall, “A nonhomogeneous eigenfunction expansion”, Trans. AMS, 117 (1965), 352–361 | DOI

[11] A. M. Krall, “On non-selfadjoint ordinary differential operators of second order”, Sov. Math. Dokl., 165 (1965), 1235–1237

[12] V. E. Lyantse, “On a differential operator with spectral singularities I”, Mat. Sb. (N.S.), 64:106 (1964), 521–561

[13] V. E. Lyantse, “On a differential operator with spectral singularities II”, Mat. Sb. (N.S.), 65:107 (1964), 47–103

[14] F. G. Maksudov, B. P. Allakhverdiev, “Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum”, Sov. Math. Dokl., 30 (1984), 566–569

[15] V. A. Marchenko, Sturm–Liouville operators and applications, AMS Chelsea Publishing, Providence, Rhode Island, 2011

[16] G. Mutlu, E. K. Arpat, “Spectral properties of non-selfadjoint Sturm–Liouville operator equation on the real axis”, Hacet. J. Math. Stat., 49:5 (2020), 1686–1694 | DOI

[17] M. A. Naimark, “Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis”, Amer. Math. Soc. Transl. Ser. 2, 16 (1960), 103–193

[18] M. A. Naimark, Linear differential operators, v. II, Frederick Ungar Publishing Co., Inc., New York, 1968

[19] B. S. Pavlov, “The non-self-adjoint Schrodinger operator”, Spectral Theory and Wave Processes, Topics in Mathematical Physics, 1, ed. M.S. Birman, Springer, Boston, MA, 1967, 87–114

[20] B. S. Pavlov, “On the spectral theory of non-selfadjoint differential operators”, Dokl. Akad. Nauk SSSR, 146 (1962), 1267–1270

[21] I. I. Privalov, The boundary properties of analytic functions, Hochshulbucher fur Mathematics, 25, VEB Deutscher Verlag, Berlin, 1956

[22] J. T. Schwartz, “Some non-self-adjoint operators”, Comm. Pure and App. Maths., 13 (1960), 609–639 | DOI

[23] N. Yokus, N. Coskun, “A note on the matrix Sturm–Liouville operators with principal functions”, Math. Methods Appl. Sci., 42:16 (2019), 5362–5370 | DOI

[24] N. Yokus, E. K. Arpat, “Spectral expansion of Sturm–Liouville problems with eigenvalue-dependent boundary conditions”, Commun. Fac. Sci. Univ. Ank Ser. A1 Math. Stat., 68:2 (2019), 1316–1334 | DOI

[25] N. Yokus, T. Koprubasi, “Spectrum of the Sturm–Liouville operators with boundary conditions polynomially dependent on the spectral parameter”, J. Inequal. Appl., 42 (2015) | DOI