Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_3_a5, author = {N. P. Kosar and O. Akcay}, title = {The spectrum and principal functions of a nonself-adjoint {Sturm--Liouville} operator with discontinuity conditions}, journal = {Eurasian mathematical journal}, pages = {55--67}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/} }
TY - JOUR AU - N. P. Kosar AU - O. Akcay TI - The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions JO - Eurasian mathematical journal PY - 2024 SP - 55 EP - 67 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/ LA - en ID - EMJ_2024_15_3_a5 ER -
%0 Journal Article %A N. P. Kosar %A O. Akcay %T The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions %J Eurasian mathematical journal %D 2024 %P 55-67 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/ %G en %F EMJ_2024_15_3_a5
N. P. Kosar; O. Akcay. The spectrum and principal functions of a nonself-adjoint Sturm--Liouville operator with discontinuity conditions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 55-67. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a5/
[1] M. Advar, A. Akbulut, “Non-self-adjoint boundary-value problem with discontinuous density function”, Math. Methods Appl. Sci., 33:11 (2010), 1306–1316 | DOI
[2] M. Advar, E. Bairamov, “Spectral singularities of the nonhomogenous Sturm–Liouville equations”, Appl. Math. Lett., 15 (2002), 825–832 | DOI
[3] E. Bairamov, I. Erdal, S. Yardimci, “Spectral properties of an impulsive Sturm–Liouville operator”, J. Inequal. Appl., 2018:191 (2018) | DOI
[4] E. Bairamov, E. K. Arpat, G. Mutlu, “Spectral properties of non-selfadjoint Sturm–Liouville operator with operator coefficient”, J. Math. Anal. Appl., 456:1 (2017), 293–306 | DOI
[5] E. Bairamov, N. Yokus, “Spectral singularities of Sturm–Liouville problems with eigenvalue-dependent boundary conditions”, Abstr. Appl. Anal., 2009, 289596, 8 pp. | DOI
[6] E. Bairamov O. Cakar, A. M. Krall, “Spectrum and spectral singularities of a quadratic pencil of a Schrodinger operator with a general boundary condition”, J. Differential Equations, 151 (1999), 252–267 | DOI
[7] E. P. Dolzhenko, “Boundary value uniqueness theorems for analytic functions”, Math. Notes, 26 (1979), 437–442 | DOI
[8] M. G. Gasymov, F. G. Maksudov, “The principal part of the resolvent of non-selfadjoint operators in neighborhood of spectral singularities”, Funct. Anal. Appl., 6 (1972), 185–192 | DOI
[9] H. M. Huseynov, J. A. Osmanova, “On Jost solution of Sturm–Liouville equation with discontinuity conditions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci., 27:1 (2007), 63–70
[10] A. M. Krall, “A nonhomogeneous eigenfunction expansion”, Trans. AMS, 117 (1965), 352–361 | DOI
[11] A. M. Krall, “On non-selfadjoint ordinary differential operators of second order”, Sov. Math. Dokl., 165 (1965), 1235–1237
[12] V. E. Lyantse, “On a differential operator with spectral singularities I”, Mat. Sb. (N.S.), 64:106 (1964), 521–561
[13] V. E. Lyantse, “On a differential operator with spectral singularities II”, Mat. Sb. (N.S.), 65:107 (1964), 47–103
[14] F. G. Maksudov, B. P. Allakhverdiev, “Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum”, Sov. Math. Dokl., 30 (1984), 566–569
[15] V. A. Marchenko, Sturm–Liouville operators and applications, AMS Chelsea Publishing, Providence, Rhode Island, 2011
[16] G. Mutlu, E. K. Arpat, “Spectral properties of non-selfadjoint Sturm–Liouville operator equation on the real axis”, Hacet. J. Math. Stat., 49:5 (2020), 1686–1694 | DOI
[17] M. A. Naimark, “Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis”, Amer. Math. Soc. Transl. Ser. 2, 16 (1960), 103–193
[18] M. A. Naimark, Linear differential operators, v. II, Frederick Ungar Publishing Co., Inc., New York, 1968
[19] B. S. Pavlov, “The non-self-adjoint Schrodinger operator”, Spectral Theory and Wave Processes, Topics in Mathematical Physics, 1, ed. M.S. Birman, Springer, Boston, MA, 1967, 87–114
[20] B. S. Pavlov, “On the spectral theory of non-selfadjoint differential operators”, Dokl. Akad. Nauk SSSR, 146 (1962), 1267–1270
[21] I. I. Privalov, The boundary properties of analytic functions, Hochshulbucher fur Mathematics, 25, VEB Deutscher Verlag, Berlin, 1956
[22] J. T. Schwartz, “Some non-self-adjoint operators”, Comm. Pure and App. Maths., 13 (1960), 609–639 | DOI
[23] N. Yokus, N. Coskun, “A note on the matrix Sturm–Liouville operators with principal functions”, Math. Methods Appl. Sci., 42:16 (2019), 5362–5370 | DOI
[24] N. Yokus, E. K. Arpat, “Spectral expansion of Sturm–Liouville problems with eigenvalue-dependent boundary conditions”, Commun. Fac. Sci. Univ. Ank Ser. A1 Math. Stat., 68:2 (2019), 1316–1334 | DOI
[25] N. Yokus, T. Koprubasi, “Spectrum of the Sturm–Liouville operators with boundary conditions polynomially dependent on the spectral parameter”, J. Inequal. Appl., 42 (2015) | DOI