Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_3_a3, author = {T. N. Bekjan}, title = {Weak version of symmetric space}, journal = {Eurasian mathematical journal}, pages = {38--45}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a3/} }
T. N. Bekjan. Weak version of symmetric space. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 38-45. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a3/
[1] T. N. Bekjan, Z. Chen, P. Liu, Y. Jiao, “Noncommutative weak Orlicz spaces and martingale inequalities”, Studia Math., 204 (2011), 195–212 | DOI
[2] T. N. Bekjan, M. N. Ospanov, “On products of noncommutative symmetric quasi Banach spaces and applications”, Positivity, 25 (2021), 121–148 | DOI
[3] T. N. Bekjan, M. Raikhan, “On noncommutative weak Orlicz-Hardy spaces”, Ann. Funct. Anal., 13 (2022), 7 | DOI
[4] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press Inc., Boston, MA, 1988
[5] N. A. Bokayev, A. Gogatishvili, A. N. Abek, “On estimates of non-increasing rearrangement of generalized fractional maximal function”, Eurasian Math. J., 14:2 (2023), 13–23 | DOI
[6] M. Cwikel, “The dual of weak Lp”, Ann Inst Fourier, 25 (1975), 85–126 | DOI
[7] M. Cwikel, C. Fefferman, “The canonical seminorm on weak $L^1$”, Studia Math., 78 (1984), 275–278 | DOI
[8] P. G. Dodds, T. K. Dodds, B. de Pagter, “Fully symmetric operator spaces”, Integ. Equ. Oper. Theory, 15 (1992), 942–972 | DOI
[9] P. G. Dodds, T. K. Dodds, F. A. Sukochev, “On p-convexity and $q$-concavity in non-commutative symmetric spaces”, Integ. Equ. Oper. Theory, 78:1 (2014), 91–114 | DOI
[10] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123 (1986), 269–300 | DOI
[11] R. Fefferman, F. Soria, “The space weak $H^1$”, Studia Math, 85 (1987), 1–16 | DOI
[12] L. Grafakos, Classical and modern Fourier analysis, Pearson Education, London, 2004
[13] P. Kolwicz, K. Lesnik, L. Maligranda, “Pointwise products of some Banach function spaces and factorization”, J. Funct. Anal., 266 (2014), 616–659 | DOI
[14] S. G. Krein, J. I. Petunin, E. M. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., 1982
[15] J. Lindenstraus, L. Tzafriri, Classical Banach space, v. II, Springer-Verlag, Berlin, 1979
[16] M. Ledoux, M. Talagrand, Probability in Banach spaces (Isoperimetry and processes), Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1991
[17] P. Liu, Y. Hou, M. Wang, “Weak Orlicz space and its applications to martingale theory”, Sci. China Math., 53:4 (2010), 905–916 | DOI
[18] M. Rao, Z. Ren, Application of Orlicz Spaces, Marcel Dekker, New York, 2002
[19] J. Soria, “Lorentz spaces of weak-type”, Quart. J. Math. Oxford, 49 (1998), 93–103 | DOI
[20] F. Sukochev, “Completeness of quasi-normed symmetric operator spaces”, Indag. Math. (N.S.), 25:2 (2014), 376–388 | DOI
[21] K. S. Tulenov, “Optimal rearrangement-invariant Banach function range for the Hilbert transform”, Eurasian Math ematical Journal, 12:2 (2021), 90–103 | DOI
[22] Q. Xu, “Analytic functions with values in lattices and symmetric spaces of measurable operators”, Proc. Math. Camb. Phil. Soc., 109 (1991), 541–563 | DOI
[23] F. Weisz, “Weak martingale Hardy spaces”, Prob. Math. Stat., 18 (1998), 133–148
[24] F. Weisz, “Bounded operators on weak Hardy spaces and applications”, Acta Math Hungarica, 80 (1998), 249–264 | DOI
[25] N. Zhangabergenova, A. Temirkhanova, “Iterated discrete Hardy-type inequalities”, Eurasian Math. J., 14:1 (2023), 81–95 | DOI