Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_2_a5, author = {S. Yacini and C. Allalou and K. Hilal}, title = {An existence result for a $(p(x), q(x))${-Kirchhoff} type system with {Dirichlet} boundary conditions via topological degree method}, journal = {Eurasian mathematical journal}, pages = {75--91}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/} }
TY - JOUR AU - S. Yacini AU - C. Allalou AU - K. Hilal TI - An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method JO - Eurasian mathematical journal PY - 2024 SP - 75 EP - 91 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/ LA - en ID - EMJ_2024_15_2_a5 ER -
%0 Journal Article %A S. Yacini %A C. Allalou %A K. Hilal %T An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method %J Eurasian mathematical journal %D 2024 %P 75-91 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/ %G en %F EMJ_2024_15_2_a5
S. Yacini; C. Allalou; K. Hilal. An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method. Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 75-91. http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/
[1] A. Abbassi, C. Allalou, A. Kassidi, “Existence results for some nonlinear elliptic equations via topological degree methods”, Journal of Elliptic and Parabolic Equations, 7 (2021), 121–136 | DOI | MR | Zbl
[2] Y. Akdim, E. Azroul, A. Benkirane, “Existence of solutions for quasilinear degenerate elliptic equations”, Electronic Journal of Differential Equations (EJDE), 2001, 71, 19 pp. | MR | Zbl
[3] C. Allalou, K. Hilal, S. Yacini, “Existence of weak solution for $p$-Kirchhoff type problem via topological degree”, Journal of Elliptic and Parabolic Equations, 9:2 (2023), 673–686 | DOI | MR | Zbl
[4] H. Benchira, A. Matallah, M. E.O. El Mokhtar, K. Sabri, “The existence result for a$p$-Kirchhoff-type problem involving critical Sobolev exponent”, Journal of Function Spaces, 2023, no. 1, 3247421 | MR
[5] J. Berkovits, “Extension of the Leray-Schauder degree for abstract Hammerstein type mappings”, Journal of differential equations, 234:1 (2007), 289–310 | DOI | MR | Zbl
[6] J. Berkovits, O. Lehto, “On the degree theory for nonlinear mappings of monotone type”, Thesis, Annales Academiae Scientiarum Fennicae, Series A: Chemica, 1986 | MR
[7] Y. Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM journal on Applied Mathematics, 66:4 (2006), 1383–1406 | DOI | MR | Zbl
[8] Y. J. Cho, Y. Q. Chen, Topological degree theory and applications, Chapman and Hall/CRC, 2006 | MR | Zbl
[9] E. Cabanillas, A. G. Aliaga, W. Barahona, G. Rodriguez, “Existence of solutions for a class of $p(x)$-Kirchhoff type equation via topological methods”, J. Adv. Appl. Math. and Mech., 2:4 (2015), 64–72 | MR | Zbl
[10] N. T. Chung, “Multiple solutions for a class of $p(x)$-Kirchhoff type problems with Neumann boundary conditions”, Advances in Pure and Applied Mathematics, 4:2 (2013), 165–177 | DOI | MR | Zbl
[11] G. Dai, R. Hao, “Existence of solutions for a $p(x)$-Kirchhoff-type equation”, Journal of Mathematical Analysis and Applications, 359:1 (2009), 275–284 | DOI | MR | Zbl
[12] N. C. Eddine, A. Ouannasser, “Multiple solutions for nonlinear generalized-Kirchhoff type potential in unbounded domains”, Filomat, 37:13 (2023), 4317–4334 | DOI | MR
[13] N. C. Eddine, M. A. Ragusa, “Generalized critical Kirchhoff-type potential systems with Neumann Boundary conditions”, Applicable Analysis, 101:11 (2022), 3958–3988 | DOI | MR | Zbl
[14] X. L. Fan, D. Zhao, “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263:2 (2001), 424–446 | DOI | MR | Zbl
[15] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen, “The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values”, Potential Analysis, 25 (2006), 205–222 | DOI | MR | Zbl
[16] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1883
[17] I. S. Kim, S. J. Hong, “A topological degree for operators of generalized $(S_+)$ type”, Fixed Point Theory and Applications, 2015, 1–16 | MR
[18] O. Kováčik, J. Rákosníik, “On spaces $L^{p(x)}$ and $W^{1,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | DOI | MR | Zbl
[19] M. Massar, M. Talbi, N. Tsouli, “Multiple solutions for nonlocal system of $(p(x),q(x))$-Kirchhoff type”, Applied Mathematics and Computation, 242 (2014), 216–226 | DOI | MR | Zbl
[20] J. Simon, “Régularité de la solution d'uneequation non linaire dans $\mathbb{R}^N$” (Besančon, France, June 1977), Journées d'Analyse Non Linéaire, Springer, Berlin–Heidelberg, 2006, 205–227 | MR
[21] M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 2000 | MR
[22] S. G. Samko, “Density of $C_0^\infty(\mathbb{R}^N)$ in the generalized Sobolev spaces $W^{m,p(x)}(\mathbb{R}^N)$”, Doklady Mathematics, 60:3 (1999), 382–385 | MR | Zbl
[23] A. Taghavi, H. Ghorbani, “Existence of a solution for a nonlocal elliptic system of $(p(x),q(x))$-Kirchhoff type”, Advances in Pure and Applied Mathematics, 9:3 (2018), 221–233 | DOI | MR | Zbl
[24] S. A. Temghart, A. Kassidi, C. Allalou, A. Abbassi, “On an elliptic equation of Kirchhoff type problem via topological degree”, Nonlinear Studies, 28:4 (2021), 1179–1193 | MR
[25] S. Yacini, C. Allalou, K. Hilal, A. Kassidi, “Weak solutions to Kirchhoff type problems via topological degree”, Adv. Math. Mod. Appl., 6 (2021), 309–321
[26] S. Yacini, A. Abbassi, C. Allalou, A. Kassidi, “On a nonlinear equation p(x)-elliptic problem of Neumann type by topological degree method”, International Conference on Partial Differential Equations and Applications, Modeling and Simulation, Springer International Publishing, Cham, 2021, 404–417 | MR
[27] S. Yacini, C. Allalou, K. Hilal, “Weak solution to $p(x)$-Kirchhoff type problems under no-flux boundary condition by topological degree”, Boletim da Sociedade Paranaense de Matemática, 41 (2023), 1–12 | MR
[28] S. Yacini, M. El. Ouaarabi, C. Allalou, K. Hilal, “$p(x)$-Kirchhoff-type problem with no-flux boundary conditions and convection”, Nonautonomous Dynamical Systems, 10:1 (2023), 2023–0105 | DOI | MR
[29] Z. Yucedag, “Existence of weak solutions for $p(x)$-Kirchhoff-type equation”, Int. J. Pure Appl. Math., 92 (2014), 61–71 | DOI | Zbl
[30] E. Zeidler, Nonlinear functional analysis and its applications, Springer Science and Business Media, v. II/B, Nonlinear monotone operators, 2013 | MR
[31] D. Zhao, W. J. Qiang, X. L. Fan, “On generalized Orlicz spaces $L^{p(x)}(\Omega)$”, J. Gansu Sci., 9:2 (1997), 1–7
[32] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Mathematics of the USSR-Izvestiya, 29:1 (1987), 33 | DOI | MR | Zbl
[33] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 50:4 (1986), 675–710 | MR