An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method
Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 75-91

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper focuses on the existence of at least one weak solution for a nonlocal elliptic system of $(p(x), q(x))$-Kirchhoff type with Dirichlet boundary conditions. The results are obtained by applying the topological degree method of Berkovits applied to an abstract Hammerstein equation associated to our system and also by the theory of the generalized Sobolev spaces.
@article{EMJ_2024_15_2_a5,
     author = {S. Yacini and C. Allalou and K. Hilal},
     title = {An existence result for a $(p(x), q(x))${-Kirchhoff} type system with {Dirichlet} boundary conditions via topological degree method},
     journal = {Eurasian mathematical journal},
     pages = {75--91},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/}
}
TY  - JOUR
AU  - S. Yacini
AU  - C. Allalou
AU  - K. Hilal
TI  - An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 75
EP  - 91
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/
LA  - en
ID  - EMJ_2024_15_2_a5
ER  - 
%0 Journal Article
%A S. Yacini
%A C. Allalou
%A K. Hilal
%T An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method
%J Eurasian mathematical journal
%D 2024
%P 75-91
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/
%G en
%F EMJ_2024_15_2_a5
S. Yacini; C. Allalou; K. Hilal. An existence result for a $(p(x), q(x))$-Kirchhoff type system with Dirichlet boundary conditions via topological degree method. Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 75-91. http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a5/