Curvilinear parallelogram identity and mean-value property for a semilinear hyperbolic equation of the second order
Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 61-74

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss some of important qualitative properties of solutions of second-order hyperbolic equations, whose coefficients of the terms involving the second-order derivatives are independent of the desired function and its derivatives. Solutions of these equations have a special property called curvilinear parallelogram identity (or mean-value property), which can be used to solve some initial-boundary value problems.
@article{EMJ_2024_15_2_a4,
     author = {V. I. Korzyuk and J. V. Rudzko},
     title = {Curvilinear parallelogram identity and mean-value property for a semilinear hyperbolic equation of the second order},
     journal = {Eurasian mathematical journal},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a4/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - J. V. Rudzko
TI  - Curvilinear parallelogram identity and mean-value property for a semilinear hyperbolic equation of the second order
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 61
EP  - 74
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a4/
LA  - en
ID  - EMJ_2024_15_2_a4
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A J. V. Rudzko
%T Curvilinear parallelogram identity and mean-value property for a semilinear hyperbolic equation of the second order
%J Eurasian mathematical journal
%D 2024
%P 61-74
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a4/
%G en
%F EMJ_2024_15_2_a4
V. I. Korzyuk; J. V. Rudzko. Curvilinear parallelogram identity and mean-value property for a semilinear hyperbolic equation of the second order. Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 61-74. http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a4/