Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_1_a5, author = {M. J. S. Sahir and F. Chaudhry}, title = {Concinnity of dynamic inequalities designed on calculus of time scales}, journal = {Eurasian mathematical journal}, pages = {65--74}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/} }
TY - JOUR AU - M. J. S. Sahir AU - F. Chaudhry TI - Concinnity of dynamic inequalities designed on calculus of time scales JO - Eurasian mathematical journal PY - 2024 SP - 65 EP - 74 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/ LA - en ID - EMJ_2024_15_1_a5 ER -
M. J. S. Sahir; F. Chaudhry. Concinnity of dynamic inequalities designed on calculus of time scales. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/
[1] R. P. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, Springer International Publishing, Cham, Switzerland, 2014 | MR | Zbl
[2] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, “Nabla dynamic equations on time scales”, Panamer. Math. J., 13:1 (2003), 1–47 | MR | Zbl
[3] H. Bergström, “A triangle inequality for matrices”, Den Elfte Skandinaviske Matematikerkongress (Trondheim, 1949), Johan Grundt Tanums Forlag, Oslo, 1952, 264–267 | MR
[4] M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[5] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2003 | MR | Zbl
[6] A. A. El-Deeb, H. A. Elsennary, W. S. Cheung, “Some reverse Hölder inequalities with Specht's ratio on time scales”, J. Nonlinear Sci. Appl., 11 (2018), 444–455 | DOI | MR | Zbl
[7] J. I. Fujii, S. Izumino, Y. Seo, “Determinant for positive operators and Specht's theorem”, Sci. Math., 1 (1998), 307–310 | MR | Zbl
[8] S. Furuichi, “Refined Young inequalities with Specht's ratio”, Journal of the Egyptian Mathematical Society, 20 (2012), 46–49 | DOI | MR | Zbl
[9] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 | Zbl
[10] J. Radon, “Theorie und anwendungen der absolut additiven mengenfunktionen”, Sitzungsber. Acad. Wissen. Wien, 122 (1913), 1295–1438
[11] J. E. Restrepo, V. L. Chinchane, P. Agarwal, “Weighted reverse fractional inequalities of Minkowski's and Hölder's type”, TWMS J. Pure Appl. Math., 10:2 (2019), 188–198 | MR | Zbl
[12] M. J.S. Sahir, “Consonancy of dynamic inequalities correlated on time scale calculus”, Tamkang Journal of Mathe matics, 51:3 (2020), 233–243 | DOI | MR | Zbl
[13] M. J.S. Sahir, “Homogeneity of classical and dynamic inequalities compatible on time scales”, International Journal of Difference Equations, 15:1 (2020), 173–186 | MR | Zbl
[14] M. J.S. Sahir, “Integrity of variety of inequalities sketched on time scales”, Journal of Abstract and Computational Mathematics, 6:2 (2021), 8–15
[15] M. J.S. Sahir, “Patterns of time scale dynamic inequalities settled by Kantorovich's ratio”, Jordan Journal of Mathematics and Statistics (JJMS), 14:3 (2021), 397–410 | MR | Zbl
[16] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, “An exploration of combined dynamic derivatives on time scales and their applications”, Nonlinear Anal. Real World Appl, 7:3 (2006), 395–413 | DOI | MR | Zbl
[17] W. Specht, “Zer theorie der elementaren mittel”, Math. Z., 74 (1960), 91–98 | DOI | MR | Zbl
[18] M. Tominaga, “Specht's ratio in the Young inequality”, Sci. Math. Jpn., 55 (2002), 583–588 | MR | Zbl
[19] C. J. Zhao, W. S. Cheung, “H?older's reverse inequality and its applications”, Publ. Inst. Math, 99 (2016), 211–216 | DOI | MR | Zbl
[20] H. Zuo, G. Shi, M. Fujii, “Refined Young inequality with Kantorovich constant”, J. Math. Inequal., 5:4 (2011), 551–556 | DOI | MR | Zbl