Concinnity of dynamic inequalities designed on calculus of time scales
Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some reverse dynamic inequalities of Radon’s and Bergström’s type on time scales in general form. The extension of Clarkson’s dynamic inequality on time scales is also given. Our further investigations explore some dynamic inequalities by using Kantorovich’s and Specht’s ratios. The calculus of time scales unifies and extends continuous results and their corresponding discrete and quantum analogues.
@article{EMJ_2024_15_1_a5,
     author = {M. J. S. Sahir and F. Chaudhry},
     title = {Concinnity of dynamic inequalities designed on calculus of time scales},
     journal = {Eurasian mathematical journal},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/}
}
TY  - JOUR
AU  - M. J. S. Sahir
AU  - F. Chaudhry
TI  - Concinnity of dynamic inequalities designed on calculus of time scales
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 65
EP  - 74
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/
LA  - en
ID  - EMJ_2024_15_1_a5
ER  - 
%0 Journal Article
%A M. J. S. Sahir
%A F. Chaudhry
%T Concinnity of dynamic inequalities designed on calculus of time scales
%J Eurasian mathematical journal
%D 2024
%P 65-74
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/
%G en
%F EMJ_2024_15_1_a5
M. J. S. Sahir; F. Chaudhry. Concinnity of dynamic inequalities designed on calculus of time scales. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a5/

[1] R. P. Agarwal, D. O'Regan, S. Saker, Dynamic inequalities on time scales, Springer International Publishing, Cham, Switzerland, 2014 | MR | Zbl

[2] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, “Nabla dynamic equations on time scales”, Panamer. Math. J., 13:1 (2003), 1–47 | MR | Zbl

[3] H. Bergström, “A triangle inequality for matrices”, Den Elfte Skandinaviske Matematikerkongress (Trondheim, 1949), Johan Grundt Tanums Forlag, Oslo, 1952, 264–267 | MR

[4] M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl

[5] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2003 | MR | Zbl

[6] A. A. El-Deeb, H. A. Elsennary, W. S. Cheung, “Some reverse Hölder inequalities with Specht's ratio on time scales”, J. Nonlinear Sci. Appl., 11 (2018), 444–455 | DOI | MR | Zbl

[7] J. I. Fujii, S. Izumino, Y. Seo, “Determinant for positive operators and Specht's theorem”, Sci. Math., 1 (1998), 307–310 | MR | Zbl

[8] S. Furuichi, “Refined Young inequalities with Specht's ratio”, Journal of the Egyptian Mathematical Society, 20 (2012), 46–49 | DOI | MR | Zbl

[9] S. Hilger, Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 | Zbl

[10] J. Radon, “Theorie und anwendungen der absolut additiven mengenfunktionen”, Sitzungsber. Acad. Wissen. Wien, 122 (1913), 1295–1438

[11] J. E. Restrepo, V. L. Chinchane, P. Agarwal, “Weighted reverse fractional inequalities of Minkowski's and Hölder's type”, TWMS J. Pure Appl. Math., 10:2 (2019), 188–198 | MR | Zbl

[12] M. J.S. Sahir, “Consonancy of dynamic inequalities correlated on time scale calculus”, Tamkang Journal of Mathe matics, 51:3 (2020), 233–243 | DOI | MR | Zbl

[13] M. J.S. Sahir, “Homogeneity of classical and dynamic inequalities compatible on time scales”, International Journal of Difference Equations, 15:1 (2020), 173–186 | MR | Zbl

[14] M. J.S. Sahir, “Integrity of variety of inequalities sketched on time scales”, Journal of Abstract and Computational Mathematics, 6:2 (2021), 8–15

[15] M. J.S. Sahir, “Patterns of time scale dynamic inequalities settled by Kantorovich's ratio”, Jordan Journal of Mathematics and Statistics (JJMS), 14:3 (2021), 397–410 | MR | Zbl

[16] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, “An exploration of combined dynamic derivatives on time scales and their applications”, Nonlinear Anal. Real World Appl, 7:3 (2006), 395–413 | DOI | MR | Zbl

[17] W. Specht, “Zer theorie der elementaren mittel”, Math. Z., 74 (1960), 91–98 | DOI | MR | Zbl

[18] M. Tominaga, “Specht's ratio in the Young inequality”, Sci. Math. Jpn., 55 (2002), 583–588 | MR | Zbl

[19] C. J. Zhao, W. S. Cheung, “H?older's reverse inequality and its applications”, Publ. Inst. Math, 99 (2016), 211–216 | DOI | MR | Zbl

[20] H. Zuo, G. Shi, M. Fujii, “Refined Young inequality with Kantorovich constant”, J. Math. Inequal., 5:4 (2011), 551–556 | DOI | MR | Zbl