Time optimal control problem with integral constraint for the heat transfer process
Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 8-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper a mathematical model of thermocontrol processes is studied. Several convectors are installed on the disjoint subsets $\Gamma_k$ of the wall $\partial\Omega$ of a volume $\Omega$ and each convector produces a hot or cold flow with magnitude equal to $\mu_k(t)$, which are control functions, and on the surface $\partial\Omega\setminus\Gamma$, $\Gamma=\bigcup\Gamma_k$, a heat exchange occurs by the Newton law. The control functions $\mu_k(t)$ are subjected to an integral constraint. The problem is to find control functions to transfer the state of the process to a given state. A necessary and sufficient condition is found for solvability of this problem. An equation for the optimal transfer time is found, and an optimal control function is constructed explicitly.
@article{EMJ_2024_15_1_a0,
     author = {Sh. A. Alimov and G. I. Ibragimov},
     title = {Time optimal control problem with integral constraint for the heat transfer process},
     journal = {Eurasian mathematical journal},
     pages = {8--22},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a0/}
}
TY  - JOUR
AU  - Sh. A. Alimov
AU  - G. I. Ibragimov
TI  - Time optimal control problem with integral constraint for the heat transfer process
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 8
EP  - 22
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a0/
LA  - en
ID  - EMJ_2024_15_1_a0
ER  - 
%0 Journal Article
%A Sh. A. Alimov
%A G. I. Ibragimov
%T Time optimal control problem with integral constraint for the heat transfer process
%J Eurasian mathematical journal
%D 2024
%P 8-22
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a0/
%G en
%F EMJ_2024_15_1_a0
Sh. A. Alimov; G. I. Ibragimov. Time optimal control problem with integral constraint for the heat transfer process. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 8-22. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a0/

[1] Sh. A. Alimov, “On the null-controllability of the heat exchange process”, Eurasian Math. J., 2:3 (2011), 5–19 | MR | Zbl

[2] Sh. A. Alimov, “On a control problem associated with the heat transfer process”, Eurasian Math. J., 1:2 (2010), 17–30 | MR | Zbl

[3] S. Albeverio, Sh. A. Alimov, “On a time-optimal control problem associated with the heat exchange process”, Applied mathematics and optimization, 57:1 (2008), 58–68 | DOI | MR | Zbl

[4] A. A. Azamov, G. I. Ibragimov, K. Mamayusupov, M. B. Ruzibaev, “On the stability and null controllability of an infinite system of linear differential equations”, Journal of Dynamical and Control Systems, 2021, 09587–6 | DOI | MR

[5] A. A. Azamov, M. B. Ruziboev, “The time-optimal problem for evolutionary partial differential equations”, Journal of Applied Mathematics and Mechanics, 77:2 (2013), 220–224 | DOI | MR | Zbl

[6] S. A. Avdonin, S. A. Ivanov, Families of exponentials: the method of moments in controllability problems for distributed parameter systems, Cambridge UniversityPress, Cambridge, 1995 | MR | Zbl

[7] V. Barbu, “The time-optimal control problem for parabolic variational inequalities”, Applied mathematics and optimization, 11:1 (1984), 1–22 | DOI | MR

[8] A. G. Butkovskiy, Theory of optimal control of distributed parameter systems, Elsevier, New York, 1969 | MR

[9] F. L. Chernous'ko, “Bounded controls in distributed-parameter systems”, Journal of Applied Mathematics and Mechanics, 56:5 (1992), 707–723 | DOI | MR | Zbl

[10] H. O. Fattorini, “Time-optimal control of solutions of operational differential equations”, SIAM J. Control, 2:1 (1964), 54–59 | MR | Zbl

[11] A. V. Fursikov, Optimal control of distributed systems, theory and applications, Translations of Math. Monographs, 187, Amer. Math. Soc., Providence, Rhode Island, 2000 | MR | Zbl

[12] G. I. Ibragimov, “The optimal pursuit problem reduced to an infinite system of differential equation”, Journal of Applied Mathematics and Mechanics, 77:5 (2013), 470–476 | DOI | MR | Zbl

[13] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasi-linear equations of elliptic type, Nauka, M., 1964 | MR

[14] O. A. Ladyzhenskaya, V. A. Solonnikov, Linear and quasi-linear equations of parabolic type, Nauka, M., 1967 | MR

[15] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systémes distribués, v. 1, Recherches en Mathématiques Appliquées, 8, Masson, Paris, 1988 | MR

[16] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations: recent progress and open problems”, SIAM Rev, 20 (1978), 639–739 | DOI | MR | Zbl

[17] N. Yu. Satimov, M. Tukhtasinov, “On some game problems for first-order controlled evolution equations”, Differential Equations, 41:8 (2005), 1169–1177 | DOI | MR | Zbl

[18] M. Tukhtasinov, “Some problems in the theory of differential pursuit games in systems with distributed parameters”, J Appl Math Mech., 59:6 (1995), 979–984 | DOI | MR | Zbl

[19] E. Zuazua, “Controllability and observability of partial differential equations: some results and open problems”, Handbook of Differential Equations: Evolutionary Differential Equations, v. 3, Elsevier Science, 2006, 527–621 | MR

[20] X. Zhang, “A remark on null exact controllability of the heat equation”, SIAM J. Control Optim, 40 (2001), 39–53 | DOI | MR | Zbl