Maps between Fr\'echet algebras which strongly preserves distance one
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 92-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $T : X \to Y$ is a $2$-isometry between real linear $2$-normed spaces, then $T$ is affine whenever $Y$ is strictly convex. Also under some conditions we show that every surjective mapping $T : A \to B$ between real Fréchet algebras, which strongly preserves distance one, is affine.
@article{EMJ_2023_14_4_a7,
     author = {A. Zivari-Kazempour},
     title = {Maps between {Fr\'echet} algebras  which strongly preserves distance one},
     journal = {Eurasian mathematical journal},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/}
}
TY  - JOUR
AU  - A. Zivari-Kazempour
TI  - Maps between Fr\'echet algebras  which strongly preserves distance one
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 92
EP  - 99
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/
LA  - en
ID  - EMJ_2023_14_4_a7
ER  - 
%0 Journal Article
%A A. Zivari-Kazempour
%T Maps between Fr\'echet algebras  which strongly preserves distance one
%J Eurasian mathematical journal
%D 2023
%P 92-99
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/
%G en
%F EMJ_2023_14_4_a7
A. Zivari-Kazempour. Maps between Fr\'echet algebras  which strongly preserves distance one. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 92-99. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/