Maps between Fr\'echet algebras which strongly preserves distance one
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 92-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $T : X \to Y$ is a $2$-isometry between real linear $2$-normed spaces, then $T$ is affine whenever $Y$ is strictly convex. Also under some conditions we show that every surjective mapping $T : A \to B$ between real Fréchet algebras, which strongly preserves distance one, is affine.
@article{EMJ_2023_14_4_a7,
     author = {A. Zivari-Kazempour},
     title = {Maps between {Fr\'echet} algebras  which strongly preserves distance one},
     journal = {Eurasian mathematical journal},
     pages = {92--99},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/}
}
TY  - JOUR
AU  - A. Zivari-Kazempour
TI  - Maps between Fr\'echet algebras  which strongly preserves distance one
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 92
EP  - 99
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/
LA  - en
ID  - EMJ_2023_14_4_a7
ER  - 
%0 Journal Article
%A A. Zivari-Kazempour
%T Maps between Fr\'echet algebras  which strongly preserves distance one
%J Eurasian mathematical journal
%D 2023
%P 92-99
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/
%G en
%F EMJ_2023_14_4_a7
A. Zivari-Kazempour. Maps between Fr\'echet algebras  which strongly preserves distance one. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 92-99. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/

[1] J. A. Baker, “Isometries in normed spaces”, Amer. Math. Monthly, 78:6 (1971), 655–657 | DOI | MR

[2] S. Banach, Theorie des operations lineaires, Warsaw, 1932 | MR | Zbl

[3] H.Y. Chu, “On the Mazur-Ulam problem in linear 2-normed spaces”, J. Math. Anal. Appli., 327 (2007), 1041–1045 | DOI | MR | Zbl

[4] H. Y. Chu, C. G. Park, W. G. Park, “The Aleksandrov problem in linear 2-normed spaces”, J. Math. Anal. Appli., 289 (2004), 666–672 | DOI | MR | Zbl

[5] T. Figiel, P. Semrl, J. Vaisala, “Isometries of normed spaces”, Collq. Math., 92:1 (2002), 153–154 | DOI | MR | Zbl

[6] H. Goldmann, Uniform Fréchet algebras, North Holland, The Netherlands, 1990 | MR

[7] A. Mallios, Topological algebras, North Holland, 1986 | Zbl

[8] S. Mazur, S. Ulam, “Sur les transformationes isometriques despaces vectoriels normes”, C. R. Acad. Sci. Paris, 194 (1932), 946–948 | Zbl

[9] B. Nica, “The Mazur-Ulam theorem”, Expo. Math., 30 (2012), 397–398 | DOI | MR | Zbl

[10] Th. M. Rassias, P. Semrl, “On the Mazur-Ulam problem and Aleksandrov problem for unit distance preserving mappings”, Proc. Amer. Math. Soc., 118:6 (1993), 919–925 | DOI | MR | Zbl

[11] J. Vaisala, “A proof of the Mazur-Ulam theorem”, Amer. Math. Monthly, 110:7 (2003), 633–635 | DOI | MR | Zbl

[12] A. Zivari-Kazempour, M. R. Omidi, “On the Mazur-Ulam theorem for Fréchet algebras”, Proye. J. Math., 39:6 (2020), 1647–1654 | MR | Zbl