Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2023_14_4_a7, author = {A. Zivari-Kazempour}, title = {Maps between {Fr\'echet} algebras which strongly preserves distance one}, journal = {Eurasian mathematical journal}, pages = {92--99}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/} }
A. Zivari-Kazempour. Maps between Fr\'echet algebras which strongly preserves distance one. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 92-99. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a7/
[1] J. A. Baker, “Isometries in normed spaces”, Amer. Math. Monthly, 78:6 (1971), 655–657 | DOI | MR
[2] S. Banach, Theorie des operations lineaires, Warsaw, 1932 | MR | Zbl
[3] H.Y. Chu, “On the Mazur-Ulam problem in linear 2-normed spaces”, J. Math. Anal. Appli., 327 (2007), 1041–1045 | DOI | MR | Zbl
[4] H. Y. Chu, C. G. Park, W. G. Park, “The Aleksandrov problem in linear 2-normed spaces”, J. Math. Anal. Appli., 289 (2004), 666–672 | DOI | MR | Zbl
[5] T. Figiel, P. Semrl, J. Vaisala, “Isometries of normed spaces”, Collq. Math., 92:1 (2002), 153–154 | DOI | MR | Zbl
[6] H. Goldmann, Uniform Fréchet algebras, North Holland, The Netherlands, 1990 | MR
[7] A. Mallios, Topological algebras, North Holland, 1986 | Zbl
[8] S. Mazur, S. Ulam, “Sur les transformationes isometriques despaces vectoriels normes”, C. R. Acad. Sci. Paris, 194 (1932), 946–948 | Zbl
[9] B. Nica, “The Mazur-Ulam theorem”, Expo. Math., 30 (2012), 397–398 | DOI | MR | Zbl
[10] Th. M. Rassias, P. Semrl, “On the Mazur-Ulam problem and Aleksandrov problem for unit distance preserving mappings”, Proc. Amer. Math. Soc., 118:6 (1993), 919–925 | DOI | MR | Zbl
[11] J. Vaisala, “A proof of the Mazur-Ulam theorem”, Amer. Math. Monthly, 110:7 (2003), 633–635 | DOI | MR | Zbl
[12] A. Zivari-Kazempour, M. R. Omidi, “On the Mazur-Ulam theorem for Fréchet algebras”, Proye. J. Math., 39:6 (2020), 1647–1654 | MR | Zbl