Correct and coercive solvability conditions for a degenerate high order differential equation
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, we consider a fifth-order singular differential equation with variable coefficients. The singularity means, firstly, that the equation is given on the real axis $\mathbb{R}=(-\infty,\infty)$, and secondly, its coefficients are unbounded functions. We study a new degenerate case, when the intermediate coefficients of the equation grow faster than the lowest coefficient (potential), and also the potential is not sign-definite. We obtain sufficient conditions for the existence and uniqueness of the generalized solution of the equation. We also prove a coercive estimate for the solution. The coefficients of the equation are assumed to be smooth, but we do not impose any restrictions on their derivatives to prove the results. Note that the well-known stationary Kawahara equation can be reduced to the considered equation after linearization.
@article{EMJ_2023_14_4_a1,
     author = {R. D. Akhmetkaliyeva and T. D. Mukasheva and K. N. Ospanov},
     title = {Correct and coercive solvability conditions for a degenerate high order differential equation},
     journal = {Eurasian mathematical journal},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/}
}
TY  - JOUR
AU  - R. D. Akhmetkaliyeva
AU  - T. D. Mukasheva
AU  - K. N. Ospanov
TI  - Correct and coercive solvability conditions for a degenerate high order differential equation
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 9
EP  - 14
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/
LA  - en
ID  - EMJ_2023_14_4_a1
ER  - 
%0 Journal Article
%A R. D. Akhmetkaliyeva
%A T. D. Mukasheva
%A K. N. Ospanov
%T Correct and coercive solvability conditions for a degenerate high order differential equation
%J Eurasian mathematical journal
%D 2023
%P 9-14
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/
%G en
%F EMJ_2023_14_4_a1
R. D. Akhmetkaliyeva; T. D. Mukasheva; K. N. Ospanov. Correct and coercive solvability conditions for a degenerate high order differential equation. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 9-14. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/

[1] A. Abildayeva, A. Assanova, A. Imanchiyev, “A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model”, Eurasian Math. J., 13:2 (2022), 8–17 | DOI | MR | Zbl

[2] R. D. Akhmetkaliyeva, L. E. Persson, K. N. Ospanov, P. Wall, “Some new results concerning a class of third order differential equations”, Applicable Analysis, 94:2 (2015), 419–434 | DOI | MR | Zbl

[3] O. D. Apyshev, M. Otelbaev, “On the spectrum of a class of differential operators and some imbedding theorems”, Izv. Math., 15:1 (1980), 1–24 | DOI | MR | Zbl

[4] H. A. Biagioni, F. Linares, “On the Benny Lin and Kawahara equations”, J. Math. Anal. Appl., 211:1 (1997), 131–152 | DOI | MR | Zbl

[5] G. G. Doronin, N. A. Larkin, “Quarter-plane problem for the Kawahara equation”, Pacific J. Appl. Math., 1:3 (2008), 151–176

[6] T. Kato, Perturbation theory of linear operators, Mir, M., 1972 (in Russian) | MR

[7] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264 | DOI

[8] M. B. Muratbekov, Ye. N. Bayandiyev, “Existence and maximal regularity of solutions in $L_2(\mathbb{R}^2)$ for a hyperbolic type differential equation with quickly growing coefficient”, Eurasian Math. J., 11:1 (2020), 95–100 | DOI | MR | Zbl

[9] M. B. Muratbekov, M. M. Muratbekov, K. N. Ospanov, “Coercive solvability of odd order differential equations and its applications”, Doklady Mathematics, 82:3 (2010), 909–911 | DOI | MR | Zbl

[10] K. T. Mynbaev, M. Otelbaev, Weighted functional spaces and spectrum of differential operators, Nauka, M., 1988 (in Russian) | MR | Zbl

[11] M. A. Opritova, A. V. Faminskii, “On the Cauchy problem for the generalized Kawahara equation”, Diff. Equat., 52:3 (2019), 378–390 | MR

[12] N. T. Orumbayeva, A. T. Assanova, A. B. Keldibekova, “On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation”, Eurasian Math. J., 13:1 (2022), 69–85 | DOI | MR | Zbl

[13] K. N. Ospanov, “$L_1$ — maximal regularity for quasilinear second order differential equation with damped term”, Electronic Journal of Qualitative Theory of Differential Equations, 39 (2015), 1–9 | DOI | MR

[14] K. N. Ospanov, “Well posedness for one class of elliptic equations with drift”, Boundary Value Problems, 42 (2023), 1–11 | MR

[15] K. N. Ospanov, A. N. Yesbayev, “Solvability and maximal regularity results for a differential equation with diffusion coefficient”, Turk. J. Math., 44:4 (2020), 1304–1316 | DOI | MR | Zbl

[16] H. Wang, S. Cui, D. Deng, “Global existence of solutions for the Cauchy problem of the Kawahara equations in Sobolev spaces of negative indices”, Acta Math. Sin., 22:8 (2007), 1435–1446 | DOI | MR

[17] Zh. B. Yeskabylova, K. N. Ospanov, T. N. Bekjan, “The solvability results for the third order singular non-linear differential equation”, Eurasian Math. J., 11:4 (2019), 85–91 | DOI | MR

[18] K. Yosida, Functional analysis, Mir, M., 1967 (in Russian) | MR | Zbl