Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2023_14_4_a1, author = {R. D. Akhmetkaliyeva and T. D. Mukasheva and K. N. Ospanov}, title = {Correct and coercive solvability conditions for a degenerate high order differential equation}, journal = {Eurasian mathematical journal}, pages = {9--14}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/} }
TY - JOUR AU - R. D. Akhmetkaliyeva AU - T. D. Mukasheva AU - K. N. Ospanov TI - Correct and coercive solvability conditions for a degenerate high order differential equation JO - Eurasian mathematical journal PY - 2023 SP - 9 EP - 14 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/ LA - en ID - EMJ_2023_14_4_a1 ER -
%0 Journal Article %A R. D. Akhmetkaliyeva %A T. D. Mukasheva %A K. N. Ospanov %T Correct and coercive solvability conditions for a degenerate high order differential equation %J Eurasian mathematical journal %D 2023 %P 9-14 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/ %G en %F EMJ_2023_14_4_a1
R. D. Akhmetkaliyeva; T. D. Mukasheva; K. N. Ospanov. Correct and coercive solvability conditions for a degenerate high order differential equation. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 9-14. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a1/
[1] A. Abildayeva, A. Assanova, A. Imanchiyev, “A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model”, Eurasian Math. J., 13:2 (2022), 8–17 | DOI | MR | Zbl
[2] R. D. Akhmetkaliyeva, L. E. Persson, K. N. Ospanov, P. Wall, “Some new results concerning a class of third order differential equations”, Applicable Analysis, 94:2 (2015), 419–434 | DOI | MR | Zbl
[3] O. D. Apyshev, M. Otelbaev, “On the spectrum of a class of differential operators and some imbedding theorems”, Izv. Math., 15:1 (1980), 1–24 | DOI | MR | Zbl
[4] H. A. Biagioni, F. Linares, “On the Benny Lin and Kawahara equations”, J. Math. Anal. Appl., 211:1 (1997), 131–152 | DOI | MR | Zbl
[5] G. G. Doronin, N. A. Larkin, “Quarter-plane problem for the Kawahara equation”, Pacific J. Appl. Math., 1:3 (2008), 151–176
[6] T. Kato, Perturbation theory of linear operators, Mir, M., 1972 (in Russian) | MR
[7] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264 | DOI
[8] M. B. Muratbekov, Ye. N. Bayandiyev, “Existence and maximal regularity of solutions in $L_2(\mathbb{R}^2)$ for a hyperbolic type differential equation with quickly growing coefficient”, Eurasian Math. J., 11:1 (2020), 95–100 | DOI | MR | Zbl
[9] M. B. Muratbekov, M. M. Muratbekov, K. N. Ospanov, “Coercive solvability of odd order differential equations and its applications”, Doklady Mathematics, 82:3 (2010), 909–911 | DOI | MR | Zbl
[10] K. T. Mynbaev, M. Otelbaev, Weighted functional spaces and spectrum of differential operators, Nauka, M., 1988 (in Russian) | MR | Zbl
[11] M. A. Opritova, A. V. Faminskii, “On the Cauchy problem for the generalized Kawahara equation”, Diff. Equat., 52:3 (2019), 378–390 | MR
[12] N. T. Orumbayeva, A. T. Assanova, A. B. Keldibekova, “On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation”, Eurasian Math. J., 13:1 (2022), 69–85 | DOI | MR | Zbl
[13] K. N. Ospanov, “$L_1$ — maximal regularity for quasilinear second order differential equation with damped term”, Electronic Journal of Qualitative Theory of Differential Equations, 39 (2015), 1–9 | DOI | MR
[14] K. N. Ospanov, “Well posedness for one class of elliptic equations with drift”, Boundary Value Problems, 42 (2023), 1–11 | MR
[15] K. N. Ospanov, A. N. Yesbayev, “Solvability and maximal regularity results for a differential equation with diffusion coefficient”, Turk. J. Math., 44:4 (2020), 1304–1316 | DOI | MR | Zbl
[16] H. Wang, S. Cui, D. Deng, “Global existence of solutions for the Cauchy problem of the Kawahara equations in Sobolev spaces of negative indices”, Acta Math. Sin., 22:8 (2007), 1435–1446 | DOI | MR
[17] Zh. B. Yeskabylova, K. N. Ospanov, T. N. Bekjan, “The solvability results for the third order singular non-linear differential equation”, Eurasian Math. J., 11:4 (2019), 85–91 | DOI | MR
[18] K. Yosida, Functional analysis, Mir, M., 1967 (in Russian) | MR | Zbl