New $2$-microlocal Besov and Triebel--Lizorkin spaces via the Litllewood--Paley decomposition
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 75-111
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we introduce and investigate new 2-microlocal Besov and Triebel–Lizorkin spaces via the Littlewood–Paley decomposition. We establish characterizations of these function spaces by the $\varphi$-transform, the atomic and molecular decomposition and the wavelet decomposition. As applications we prove boundedness of the the Calderón–Zygmund operators and the pseudo-differential operators on the function spaces. Moreover, we give characterizations via oscillations and differences.
@article{EMJ_2023_14_3_a4,
author = {K. Saka},
title = {New $2$-microlocal {Besov} and {Triebel--Lizorkin} spaces via the {Litllewood--Paley} decomposition},
journal = {Eurasian mathematical journal},
pages = {75--111},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a4/}
}
TY - JOUR AU - K. Saka TI - New $2$-microlocal Besov and Triebel--Lizorkin spaces via the Litllewood--Paley decomposition JO - Eurasian mathematical journal PY - 2023 SP - 75 EP - 111 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a4/ LA - en ID - EMJ_2023_14_3_a4 ER -
K. Saka. New $2$-microlocal Besov and Triebel--Lizorkin spaces via the Litllewood--Paley decomposition. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 75-111. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a4/