Countably generated extensions of $QTAG$-modules
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 26-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the $QTAG$-module $M$ be the set-theoretic union of a countable collection of isotype submodules $S_k$ of countable length. For $0\leqslant k \omega$ we prove that $M$ is totally projective if $S_k$ is totally projective. Certain related assertions in this direction are also presented.
@article{EMJ_2023_14_3_a1,
author = {A. Hasan},
title = {Countably generated extensions of $QTAG$-modules},
journal = {Eurasian mathematical journal},
pages = {26--34},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/}
}
A. Hasan. Countably generated extensions of $QTAG$-modules. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 26-34. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/