Countably generated extensions of $QTAG$-modules
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 26-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the $QTAG$-module $M$ be the set-theoretic union of a countable collection of isotype submodules $S_k$ of countable length. For $0\leqslant k \omega$ we prove that $M$ is totally projective if $S_k$ is totally projective. Certain related assertions in this direction are also presented.
@article{EMJ_2023_14_3_a1,
     author = {A. Hasan},
     title = {Countably generated extensions of $QTAG$-modules},
     journal = {Eurasian mathematical journal},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/}
}
TY  - JOUR
AU  - A. Hasan
TI  - Countably generated extensions of $QTAG$-modules
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 26
EP  - 34
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/
LA  - en
ID  - EMJ_2023_14_3_a1
ER  - 
%0 Journal Article
%A A. Hasan
%T Countably generated extensions of $QTAG$-modules
%J Eurasian mathematical journal
%D 2023
%P 26-34
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/
%G en
%F EMJ_2023_14_3_a1
A. Hasan. Countably generated extensions of $QTAG$-modules. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 26-34. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/