Countably generated extensions of $QTAG$-modules
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 26-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the $QTAG$-module $M$ be the set-theoretic union of a countable collection of isotype submodules $S_k$ of countable length. For $0\leqslant k \omega$ we prove that $M$ is totally projective if $S_k$ is totally projective. Certain related assertions in this direction are also presented.
@article{EMJ_2023_14_3_a1,
     author = {A. Hasan},
     title = {Countably generated extensions of $QTAG$-modules},
     journal = {Eurasian mathematical journal},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/}
}
TY  - JOUR
AU  - A. Hasan
TI  - Countably generated extensions of $QTAG$-modules
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 26
EP  - 34
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/
LA  - en
ID  - EMJ_2023_14_3_a1
ER  - 
%0 Journal Article
%A A. Hasan
%T Countably generated extensions of $QTAG$-modules
%J Eurasian mathematical journal
%D 2023
%P 26-34
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/
%G en
%F EMJ_2023_14_3_a1
A. Hasan. Countably generated extensions of $QTAG$-modules. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 26-34. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a1/

[1] K. Benabdallah, S. Singh, “On torsion abelian groups like modules”, Lecture Notes in Mathematics, 1006, Spriger Verlag, 1983, 639–653

[2] P. Danchev, “Countable extensions of torsion abelian groups”, Arch. Math. (Brno), 41:3 (2005), 265–272

[3] P. Danchev, “On countable extensions of primary abelian groups”, Arch. Math. (Brno), 43:1 (2007), 61–66

[4] L. Fuchs, Infinite Abelian Groups, v. I, Pure Appl. Math., 36, Academic Press, New York, 1970

[5] L. Fuchs, Infinite Abelian Groups, v. II, Pure Appl. Math., 36, Academic Press, New York, 1973

[6] A. Hasan, “On generalized submodules of QTAG-modules”, Georgian Math. J., 23:2 (2016), 221–226

[7] P. Hill, “Primary groups whose subgroups of smaller cardinality are direct sums of cyclic groups”, Pacific J. Math., 42:1 (1972), 63–67

[8] P. Hill, “Countable unions of totally projective groups”, Trans. Amer. Math. Soc, 190 (1974), 385–391

[9] P. Hill, “Criteria for total projectivity”, Can. J. Math, 33:4 (1981), 817–825

[10] M. Z. Khan, “On a generalization of a theorem of Erdely”, Tamkang J. Math, 9:2 (1978), 145–149

[11] A. Mehdi, “On some QTAG-modules”, Sci. Ser. A., Math Sci, 21 (2011), 55–62

[12] A. Mehdi, M. Y. Abbasi, F. Mehdi, “Nice decomposition series and rich modules”, South East Asian J. Math. Math. Sci, 4:1 (2005), 1–6

[13] A. Mehdi, F. Sikander, S. A.R. K. Naji, “Generalizations of basic and large submodules of QTAG-modules”, Afr. Mat, 25:4 (2014), 975–986

[14] A. Mehdi, F. Sikander, S. A.R. K. Naji, “A study of elongations of QTAG-modules”, Afr. Mat, 27:1 (2016), 133–139

[15] H. A. Mehran, S. Singh, “On-pure submodules of QTAG-modules”, Arch. Math, 46:6 (1986), 501–510

[16] S. A.R. K. Naji, A study of different structures in QTAG-modules, Ph.D. thesis, Aligarh Muslim University, 2010

[17] S. Singh, “Some decomposition theorems in abelian groups and their generalizations”, Ring Theory, Proceedings of Ohio University Conference, Lecture Notes in Pure and Applied Math., 25, Marcel Dekker, New York, 1976, 183–189

[18] S. Singh, “Abelian groups like modules”, Act. Math. Hung, 50 (1987), 85–95

[19] S. Singh, M. Z. Khan, “TAG-modules with complement submodules h-pure”, Internat. J. Math. Math. Sci, 21:4 (1998), 801–814