Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 8-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present more than 60 results, including some range inclusion results to characterize the reverse order law for the Moore–Penrose inverse of closed range Hilbert space operators. We use the basic properties of the Moore-Penrose inverse to prove the results. Some examples are also provided to illustrate failure cases of the reverse order law in an infinite-dimensional setting.
@article{EMJ_2023_14_3_a0,
     author = {S. K. Athira and K. Kamaraj and P. S. Johnson},
     title = {Algebraic proofs of characterizing reverse order law for closed range operators in {Hilbert} spaces},
     journal = {Eurasian mathematical journal},
     pages = {8--25},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/}
}
TY  - JOUR
AU  - S. K. Athira
AU  - K. Kamaraj
AU  - P. S. Johnson
TI  - Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 8
EP  - 25
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/
LA  - en
ID  - EMJ_2023_14_3_a0
ER  - 
%0 Journal Article
%A S. K. Athira
%A K. Kamaraj
%A P. S. Johnson
%T Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
%J Eurasian mathematical journal
%D 2023
%P 8-25
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/
%G en
%F EMJ_2023_14_3_a0
S. K. Athira; K. Kamaraj; P. S. Johnson. Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 8-25. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/

[1] E. Arghiriade, “Remarques sur l'inverse g?en?eralis?ee d'un produit de matrices”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser VIII, 42 (1967), 621–625

[2] A. Ben-Israel, T. N.E. Greville, Generalized inverses. Theory and applications, CMS Books in Mathematics, Second edition, Springer-Verlag, New York, 2003

[3] F. J. Beutler, “The operator theory of the pseudo-inverse I. Bounded Operators”, J. Math. Anal. Appl, 10 (1965), 451–470

[4] F. J. Beutler, “The operator theory of the pseudo-inverse II. Unbounded Operators with Arbitrary Range”, J. Math. Anal. Appl, 10 (1965), 471–493

[5] A. Bjerhammar, “Rectangular reciprocal matrices, with special reference to geodetic calculations”, Bull. Géodésique, 20 (1951), 188–220

[6] R. H. Bouldin, “The pseudo-inverse of a product”, SIAM J. Appl. Math, 25 (1973), 489–495

[7] R. H. Bouldin, “Generalized inverses and factorizations”, Recent Applications of Generalized Inverses, Pit man Ser. Res. Notes in Math., 66, 1982, 233–248

[8] K. G. Brock, “A note on commutativity of a linear operator and its Moore-Penrose inverse”, Numer. Funct. Anal. Optim, 11 (1990), 673–678

[9] R. E. Cline, “Note on the generalized inverse of the product of matrices”, SIAM Rev, 6 (1964), 57–58

[10] N. C. Dincic, D. S. Djordjevic, “Basic reverse order law and its equivalencies”, Aequationes Math, 85:3 (2013), 505–517

[11] D. S. Djordjevic, N. C. Dincic, “Reverse order law for Moore-Penrose inverse”, J. Math. Anal. Appl, 361 (2010), 252–261

[12] R. G. Douglas, “On majorization, factorization, and range inclusion of operators on Hilbert space”, Proc. Amer. Math. Soc., 17 (1966), 413–415

[13] T. N.E. Greville, “Note on the generalized inverse of a matrix product”, SIAM Review, 8 (1966), 518–521

[14] B. C. Hall, Quantum theory for mathematicians, Graduate Texts in Mathematics, Springer, New York, 2013

[15] R. Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, 109, Marcel Dekker, Inc., New York, 1988

[16] S. Izumino, “The product of operators with closed range and an extension of the reverse order law”, Tohoku Math. J., 34 (1982), 43–52

[17] E. H. Moore, “On the reciprocal of the general algebraic matrix (abstract)”, Bull. Am. Math. Soc, 26 (1920), 394–395

[18] D. Mosic, D. S. Djordjevic, “Reverse order law in $C^*$-algebras”, Appl. Math. Comput, 218:7 (2011), 3934–3941

[19] F. J. Murray, J. v. Neumann, “On rings of operators”, Ann. of Math, 37:1 (1936), 116–229

[20] M. Z. Nashed, G. F. Votruba, “A unified operator theory of generalized inverses”, Generalized inverses and appli cations, Proc. Sem. (Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973), Publ. Math. Res. Center Univ. Wisconsin, 32, Academic Press, New York, 1976, 1–109

[21] R. Penrose, “A generalized inverse for matrices”, Proc. Cambridge Philos. Soc, 51 (1955), 406–413

[22] Y. Tian, “Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products”, Appl. Math. Comput, 147 (2004), 581–600

[23] Y. Tian, “A family of 512 reverse order laws for generalized inverses of a matrix product: A review”, Heliyon, 6:9 (2020), e04924

[24] Y. Y. Tseng, “Generalized inverses of unbounded operators between two unitary spaces”, Doklady Akad. Nauk SSSR (N.S.), 67 (1949), 431–434

[25] G. Wang, Y. We, S. Qiao, Generalized inverses: theory and computations, Springer, Singapore, 2018

[26] Z. Xiong, Y. Qin, “Mixed-type reverse-order laws for the generalized inverses of an operator product”, Arab. J. Sci. Eng, 36 (2011), 475–486