Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 8-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We present more than 60 results, including some range inclusion results to characterize the reverse order law for the Moore–Penrose inverse of closed range Hilbert space operators. We use the basic properties of the Moore-Penrose inverse to prove the results. Some examples are also provided to illustrate failure cases of the reverse order law in an infinite-dimensional setting.
@article{EMJ_2023_14_3_a0,
author = {S. K. Athira and K. Kamaraj and P. S. Johnson},
title = {Algebraic proofs of characterizing reverse order law for closed range operators in {Hilbert} spaces},
journal = {Eurasian mathematical journal},
pages = {8--25},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/}
}
TY - JOUR AU - S. K. Athira AU - K. Kamaraj AU - P. S. Johnson TI - Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces JO - Eurasian mathematical journal PY - 2023 SP - 8 EP - 25 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/ LA - en ID - EMJ_2023_14_3_a0 ER -
%0 Journal Article %A S. K. Athira %A K. Kamaraj %A P. S. Johnson %T Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces %J Eurasian mathematical journal %D 2023 %P 8-25 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/ %G en %F EMJ_2023_14_3_a0
S. K. Athira; K. Kamaraj; P. S. Johnson. Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 8-25. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/