Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 8-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We present more than 60 results, including some range inclusion results to characterize the reverse order law for the Moore–Penrose inverse of closed range Hilbert space operators. We use the basic properties of the Moore-Penrose inverse to prove the results. Some examples are also provided to illustrate failure cases of the reverse order law in an infinite-dimensional setting.
@article{EMJ_2023_14_3_a0,
     author = {S. K. Athira and K. Kamaraj and P. S. Johnson},
     title = {Algebraic proofs of characterizing reverse order law for closed range operators in {Hilbert} spaces},
     journal = {Eurasian mathematical journal},
     pages = {8--25},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/}
}
TY  - JOUR
AU  - S. K. Athira
AU  - K. Kamaraj
AU  - P. S. Johnson
TI  - Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 8
EP  - 25
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/
LA  - en
ID  - EMJ_2023_14_3_a0
ER  - 
%0 Journal Article
%A S. K. Athira
%A K. Kamaraj
%A P. S. Johnson
%T Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces
%J Eurasian mathematical journal
%D 2023
%P 8-25
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/
%G en
%F EMJ_2023_14_3_a0
S. K. Athira; K. Kamaraj; P. S. Johnson. Algebraic proofs of characterizing reverse order law for closed range operators in Hilbert spaces. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 8-25. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a0/