$n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 79-93
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present article, we introduce a new class of operators which will be called the class
of $(M, k)$-quasi-$*$-class $Q$ operators. An operator $A\in B(H)$ is said to be $(M, k)$-quasi-$*$-class $Q$ for
certain integer $k$, if there exists $M>0$ such that
$$
A^{*k}(MA^{*2}A^2-2AA^*+I)A^k\geqslant0.
$$
Some properties of this class of operators are shown. It is proved that the considered class contains
the class of $k$-quasi-$*$-class $\mathbb{A}$ operators. The decomposition of such operators, their restrictions on
invariant subspaces, the $n$-multicyclicity and some spectral properties are also presented. We also
show that if $\lambda\in\mathbb{C}$, $\lambda\ne0$ is an isolated point of the spectrum of $A$, then the Riesz idempotent $E$ for
$\lambda$ is self-adjoint, and verifies $EH=ker(A-\lambda)=ker(A-\lambda)^*$.
@article{EMJ_2023_14_2_a4,
author = {A. Nasli Bakir and S. Mecheri},
title = {$n${-Multiplicity} and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators},
journal = {Eurasian mathematical journal},
pages = {79--93},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/}
}
TY - JOUR AU - A. Nasli Bakir AU - S. Mecheri TI - $n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators JO - Eurasian mathematical journal PY - 2023 SP - 79 EP - 93 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/ LA - en ID - EMJ_2023_14_2_a4 ER -
A. Nasli Bakir; S. Mecheri. $n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 79-93. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/