$n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 79-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, we introduce a new class of operators which will be called the class of $(M, k)$-quasi-$*$-class $Q$ operators. An operator $A\in B(H)$ is said to be $(M, k)$-quasi-$*$-class $Q$ for certain integer $k$, if there exists $M>0$ such that $$ A^{*k}(MA^{*2}A^2-2AA^*+I)A^k\geqslant0. $$ Some properties of this class of operators are shown. It is proved that the considered class contains the class of $k$-quasi-$*$-class $\mathbb{A}$ operators. The decomposition of such operators, their restrictions on invariant subspaces, the $n$-multicyclicity and some spectral properties are also presented. We also show that if $\lambda\in\mathbb{C}$, $\lambda\ne0$ is an isolated point of the spectrum of $A$, then the Riesz idempotent $E$ for $\lambda$ is self-adjoint, and verifies $EH=ker(A-\lambda)=ker(A-\lambda)^*$.
@article{EMJ_2023_14_2_a4,
     author = {A. Nasli Bakir and S. Mecheri},
     title = {$n${-Multiplicity} and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators},
     journal = {Eurasian mathematical journal},
     pages = {79--93},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/}
}
TY  - JOUR
AU  - A. Nasli Bakir
AU  - S. Mecheri
TI  - $n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 79
EP  - 93
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/
LA  - en
ID  - EMJ_2023_14_2_a4
ER  - 
%0 Journal Article
%A A. Nasli Bakir
%A S. Mecheri
%T $n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators
%J Eurasian mathematical journal
%D 2023
%P 79-93
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/
%G en
%F EMJ_2023_14_2_a4
A. Nasli Bakir; S. Mecheri. $n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 79-93. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a4/

[1] J. Agler, M. Stankus, “m-isometric transformations of Hilbert spaces I”, Int. Equa. Oper. Theo., 21 (1995), 387–429 | MR

[2] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers, 2004 | MR | Zbl

[3] S. C. Arora, J. K. Thukral, “On a class of operators”, Glas. Mat. Ser. III, 21 (1998), 381–386 | MR

[4] M. Dehghani, S. M.S. Modarres, M. S. Moslehian, “Positive block matrices on Hilbert and Krein Cmodules”, Surveys in Math. Appl., 8 (2013), 23–34 | MR | Zbl

[5] A. Devika, G. Suresh, “$(M, k)$-quasi-class $Q$ operators and $(M, k)$-quasi-$*$-class $Q$ composition operators on Hardy spaces”, Commun. Appl. Anal., 21:1 (2017), 1–14 | DOI | MR

[6] B. P. Dugall, I. H. Jeon, I. H. Kim, “On-paranormal contractions and properties for $*$-class $A$ operators”, Lin. Alg. Appl., 36 (2012), 954–962 | DOI | MR

[7] T. Furuta, Invitation to linear operators: from Matrices to bounded linear operators in Hilbert space, CRC Press, 2001 | MR

[8] T. Furuta, M. Ito, T. Yamazaki, “A subclass of paranormal operators including class of log-hyponormal and several related classes”, Sci. Math., 1 (1998), 389–403 | MR | Zbl

[9] J. K. Han, H. Y. Lee, W. Y. Lee, “Invertible completions of $2\times 2$ upper triangular operator matrices”, Proc. Amer. Math. Soc., 128 (1999), 119–123 | DOI | MR

[10] R. E. Harte, W. Y. Lee, “Another note on Weyl's theorem”, Trans. Amer. Math. Soc., 349 (1997), 2115–2124 | DOI | MR | Zbl

[11] D. A. Herrero, “On multicyclic operators”, Int. equa. Oper. Th., 1:1 (1978), 57–102 | DOI | MR | Zbl

[12] I. H. Jeon, I. H. Kim, “On operators satisfying $T^*|T^2|T\geqslant T^*|T|^2T$”, Lin. Alg. Appl., 418 (2006), 854–862 | DOI | MR | Zbl

[13] G. Lumer, M. Rosenblum, “Linear operator equations”, Proc. Amer. Math. Soc., 10 (1959), 32–41 | DOI | MR | Zbl

[14] S. Mecheri, “On operators satisfying an inequality”, J. Ineq. Appl., 244 (2012) | DOI | MR | Zbl

[15] S. Mecheri, “Bishop's property, SVEP and Dunford property (C)”, Elect. J. Lin. Alg., 23 (2012), 523–529 | MR | Zbl

[16] S. Mecheri, “On a new class of operators and Weyl type theorems”, Filomat, 27:4 (2013), 629–636 | DOI | MR | Zbl

[17] S. Mecheri, “Bishop's property $(\beta)$, hypercyclicity and hyperinvariant subspaces”, Oper. and Matr., 8:2 (2014), 555–562 | DOI | MR | Zbl

[18] S. Mecheri, A. Mansour, “On the operator equation $AXB-XD=E$”, Lobachevskii J. Mathematics, 30:3 (2009), 224–228 | DOI | MR | Zbl

[19] S. Mecheri, M. Seddik, “Weyl type theorems for posinormal operators”, Proc. Math. Royal Irish Acad., 108A:1 (2008), 69–79 | DOI | MR | Zbl

[20] S. Mecheri, A. Uchiyama, “An extension of Fuglede Putnam's theorem to class $A$ operators”, Math. Ineq. Appl., 13:1 (2010), 57–61 | MR | Zbl

[21] A. Nasli Bakir, “Basic properties of certain class of non normal operators”, Adv. Theo. Nonlin. Anal. Appl., 4:4 (2020), 402–406

[22] S. M. Patel, “2-isometric operators”, Glas. Mat., 37:57 (2002), 141–145 | MR | Zbl

[23] J. L. Shen, F. Zuo, C. S. Yang, “On operators satisfying $T^*|T|^2T\geqslant T^*|T^*|^2T$”, Acta. Math. Sinica, English series, 26:11 (2010), 2109–2116 | DOI | MR | Zbl

[24] M. Rosenblum, “On the operator equation $BX-XA = Q$”, Duke Math. J., 23 (1956), 263–270 | DOI | MR

[25] M. Rosenblum, “The operator equation $BX-XA = Q$ with self adjoint $A$ and $B$”, Proc. Amer. Math. Soc., 20 (1969), 115–120 | MR | Zbl

[26] W. E. Roth, “The equations $AY-Y B = C$ and $AX-XB = C$ in matrices”, Proc. Amer. Math. Soc., 20 (1969), 392–396 | MR

[27] A. R. Schweinsberg, “The operator equation $AX-XB = C$ with normal $A$ and $B$”, Pacific J. Math., 102:2 (1982), 447–453 | DOI | MR | Zbl

[28] K. Tanahashi, A. Uchiyama, “A note on-$*$-paranormal operators and related classes of operators”, Bull. Korean Math. Soc., 51:2 (2014), 357–371 | DOI | MR | Zbl