Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2023_14_2_a3, author = {K. T. Mynbaev}, title = {Three weight {Hardy} inequality on measure topological spaces}, journal = {Eurasian mathematical journal}, pages = {58--78}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a3/} }
K. T. Mynbaev. Three weight Hardy inequality on measure topological spaces. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 58-78. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a3/
[1] R. A. Bandaliev, “Application of multidimensional Hardy operator and its connection with a certain nonlinear differential equation in weighted variable Lebesgue spaces”, Ann. Funct. Anal., 4:2 (2013), 118–130 | DOI | MR | Zbl
[2] G. A. Bliss, “An integral inequality”, J. London Math. Soc., 5:1 (1930), 40–46 | DOI | MR
[3] P. Drábek, H. P. Heinig, A. Kufner, “Higher-dimensional Hardy inequality”, General inequalities, 7 (Oberwolfach, 1995), 1997, 3–16 | MR | Zbl
[4] D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and compact integral operators, Mathematics and its Applications, 543, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[5] A. Kalybay, R. Oinarov, “Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl
[6] A. Kufner, L. Maligranda, L. E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plzěn, 2007 | MR | Zbl
[7] A. Kufner, B. Opic, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific Technical, Harlow, 1990 | MR | Zbl
[8] A. Kufner, L. E. Persson, N. Samko, Weighted inequalities of Hardy type, Second edition, World Scientific Pub lishing Co. Pte. Ltd., Hackensack, NJ, 2017 | MR | Zbl
[9] K. Kuliev, “On estimates for norms of some integral operators with Oinarov's kernel”, Eurasian Math. J., 13:3 (2022), 67–81 | DOI | MR | Zbl
[10] V. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Fundamental Principles of Mathematical Sciences, 342, Springer, Heidelberg, 2011 | MR | Zbl
[11] R. Oinarov, “Two-sided estimates for the norm of some classes of integral operators”, Proc. Steklov Inst. Math., 204:3 (1994), 205–214 | MR
[12] D. V. Prokhorov, “Hardy's inequality with three measures”, Proc. Steklov Inst. Math., 255 (2006), 223–233 | DOI | MR
[13] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for the Riemann-Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR | Zbl
[14] D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “Hardy-Steklov integral operators: Part I”, Proc. Steklov Inst. Math., 300:2 (2018), 1–112 | MR
[15] W. Rudin, Real and complex analysis, Third edition, Co. McGraw-Hill Book, New York, 1987 | MR | Zbl
[16] M. Ruzhansky, D. Verma, “Hardy inequalities on metric measure spaces”, Proc. R. Soc. A, 475:2223 (2019), 20180310, 15 pp. | DOI | MR | Zbl
[17] M. Ruzhansky, D. Verma, “Hardy inequalities on metric measure spaces, II: the case $p > q$”, Proc. R. Soc. A, 477:2250 (2021), 20210136, 16 pp. | DOI | MR
[18] M. Ruzhansky, N. Yessirkegenov, Hardy, Hardy-Sobolev, Hardy-Littlewood-Sobolev and Caffarelli-Kohn-Nirenberg inequalities on general Lie groups, 21 Feb 2019, arXiv: 1810.08845v2 [math.FA] | MR
[19] E. Sawyer, “Weighted inequalities for the two-dimensional Hardy operator”, Studia Math., 82:1 (1985), 1–16 | DOI | MR | Zbl
[20] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | DOI | MR | Zbl
[21] G. Sinnamon, “One-dimensional Hardy-type inequalities in many dimensions”, Proc. Roy. Soc. Edinburgh Sect. A, 128:4 (1998), 833–848 | DOI | MR | Zbl
[22] G. Sinnamon, “Hardy inequalities in normal form”, Trans. Amer. Math. Soc., 375:2 (2022), 961–995 | MR | Zbl
[23] V. D. Stepanov, G. E. Shambilova, “On two-dimensional bilinear inequalities with rectangular Hardy operators in weighted Lebesgue spaces”, Proc. Steklov Inst. Math., 312 (2021), 241–248 | DOI | MR | Zbl
[24] A. M. Temirkhanova, A. T. Beszhanova, “Boundedness and compactness of a certain class of matrix operators with variable limits of summation”, Eurasian Math. J., 11:4 (2020), 66–75 | DOI | MR | Zbl