Three weight Hardy inequality on measure topological spaces
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 58-78

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Hardy inequality to hold on a Hausdorff topological space, we obtain necessary and sufficient conditions on the weights and measures. As in the recent paper by G. Sinnamon (2022), we assume total orderedness of the family of sets that generate the Hardy operator. Sinnamon’s method consists in the reduction of the problem to an equivalent one-dimensional problem. We provide a different, direct proof which develops the approach suggested by D. Prokhorov (2006) in the one-dimensional case.
@article{EMJ_2023_14_2_a3,
     author = {K. T. Mynbaev},
     title = {Three weight {Hardy} inequality on measure topological spaces},
     journal = {Eurasian mathematical journal},
     pages = {58--78},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a3/}
}
TY  - JOUR
AU  - K. T. Mynbaev
TI  - Three weight Hardy inequality on measure topological spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 58
EP  - 78
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a3/
LA  - en
ID  - EMJ_2023_14_2_a3
ER  - 
%0 Journal Article
%A K. T. Mynbaev
%T Three weight Hardy inequality on measure topological spaces
%J Eurasian mathematical journal
%D 2023
%P 58-78
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a3/
%G en
%F EMJ_2023_14_2_a3
K. T. Mynbaev. Three weight Hardy inequality on measure topological spaces. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 58-78. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a3/