Approximate solutions of the Swift--Hohenberg equation with dispersion
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the initial and boundary value problems for the Swift–Hohenberg equation as over the finite spatial interval $x\in [0,l]$ and finite time interval $t\in[0, t^*]$ are considered. Approximate solutions for the initial and boundary value problems are obtained via the differential transform method and reduced differential transform method. Finally, several numerical examples are presented in order to demonstrate the effectivity of the methods and clarify the influence of the parameters on the solution.
@article{EMJ_2023_14_1_a5,
     author = {H. Rouhparvar},
     title = {Approximate solutions of the {Swift--Hohenberg} equation with dispersion},
     journal = {Eurasian mathematical journal},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a5/}
}
TY  - JOUR
AU  - H. Rouhparvar
TI  - Approximate solutions of the Swift--Hohenberg equation with dispersion
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 71
EP  - 80
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a5/
LA  - en
ID  - EMJ_2023_14_1_a5
ER  - 
%0 Journal Article
%A H. Rouhparvar
%T Approximate solutions of the Swift--Hohenberg equation with dispersion
%J Eurasian mathematical journal
%D 2023
%P 71-80
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a5/
%G en
%F EMJ_2023_14_1_a5
H. Rouhparvar. Approximate solutions of the Swift--Hohenberg equation with dispersion. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a5/

[1] I. H. Abdel-Halim Hassan, “Differential transformation technique for solving higher-order initial value problems”, Appl. Math. Comput., 154 (2004), 299–311 | MR | Zbl

[2] I. H. Abdel-Halim Hassan, “Application to differential transformation method for solving systems of differential equations”, Appl. Math. Modell, 32:12 (2008), 2552–2559 | DOI | MR | Zbl

[3] F. T. Akyildiz, D. A. Siginer, K. Vajravelu, R. A. Van Gorder, “Analytical and numerical results for the Swifta–Hohenberg equation”, Appl. Math. Comput., 216:1 (2010), 221–226 | MR | Zbl

[4] I. S. Aranson, K. A. Gorshkov, A. S. Lomov, M. I. Rabinovich, “Stable particle-like solutions of multidimensional nonlinear fields”, Phys. D, 43 (1990), 435–453 | DOI | MR | Zbl

[5] A. Arikoglu, I. Ozkol, “Solution of fractional differential equations by using differential transform method”, Chaos, Solitons and Fractals, 34:5 (2007), 1473–1481 | DOI | MR | Zbl

[6] A. Arikoglu, I. Ozkol, “Solution of boundary value problems for integro-differential equations by using differential transform method”, Appl. Math. Comput., 168 (2005), 1145–1158 | MR | Zbl

[7] F. Ayaz, “Solutions of the system of differential equations by differential transform method”, Applied Mathematics and Computation, 147:2 (2004), 547–567 | DOI | MR | Zbl

[8] F. Ayaz, “On the two-dimensional differential transform method”, Appl. Math. Comput, 143 (2003), 361–374 | MR | Zbl

[9] J. Burke, S. M. Houghton, E. Knobloch, “Swift-Hohenberg equation with broken re ection symmetry”, Phys Rev E, 80 (2009), 036202 | DOI

[10] S. Catal, “Solution of free vibration equations of beamon elastic soil by using differential transform method”, Applied Mathematical Modelling, 32:9 (2008), 1744–1757 | DOI | Zbl

[11] L. Yu, Glebsky, L. M. Lerman, “On small stationary localized solutions for the generalized 1-D Swift-Hohenberg equation”, CHAOS, 5 (1995), 424–431 | DOI | MR | Zbl

[12] M. J. Jang, C. L. Chen, “Analysis of the response of a strongly nonlinear damped system using a differential transformation technique”, Appl. Math. Comput., 88 (1997), 137–151 | MR | Zbl

[13] M. J. Jang, C. L. Chen, Y. C. Liu, “Two-dimensional differential transform for partial differential equations”, Applied Mathematics and Computation, 121:2-3 (2001), 261–270 | DOI | MR | Zbl

[14] F. Kangalgil, F. Ayaz, “Solitary wave solutions for the KdV and mKdV equations by differential transform method”, Chaos Solitons Fractals, 41 (2009), 464–472 | DOI | MR | Zbl

[15] Y. Keskin, Ph. D. Thesis, Selcuk University, 2010 (in Turkish) | Zbl

[16] Y. Keskin, G. Oturanç, “Reduced differential transform method for partial differential equations”, Int. J. of Nonl. Sci. and Num. Simulation, 10:6 (2009), 741–749

[17] Y. Keskin, G. Oturanç, “Reduced differential transform method for generalized KdV equations”, Math. Computational Applications, 15:3 (2010), 382–393 | DOI | MR | Zbl

[18] Y. Keskin, G. Oturanç, “Reduced differential transform method for solving linear and nonlinear wave equations”, Iranian J. of Sci. Tech. Transaction A, 34:A2 (2010), 113–122 | MR

[19] N. A. Khan, N. U. Khan, M. Ayaz, A. Mahmood, “Analytical methods for solving the time-fractional SwiftHohenberg (S-H) equation”, Computers and Math. with App., 61 (2011), 2182–2185 | DOI | MR | Zbl

[20] H. Liu, S. Yongzhong, “Differential transform method applied to high index differential algebraic equations”, Appl. Math. Comput., 184 (2007), 748–753 | MR | Zbl

[21] O. O. Ozdemir, M. O. Kaya, “Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method”, J. of Sound and Vibration, 289:1-2 (2006), 413–420 | DOI

[22] Y. Pomeau, S. Zaleski, “Dislocation motion in cellular structures”, J. Phys., 42 (1981), 2710–2726 | MR

[23] H. Rouhparvar, “Computational technique of linear partial differential equations by reduced differential transform method”, Int. J. of Industrial Math., 8:4 (2016), 339–346

[24] J. Swift, P. C. Hohenberg, “Hydrodynamic uctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI

[25] J. K. Zhou, Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, 1986 (in Chinese)