Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2023_14_1_a5, author = {H. Rouhparvar}, title = {Approximate solutions of the {Swift--Hohenberg} equation with dispersion}, journal = {Eurasian mathematical journal}, pages = {71--80}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a5/} }
H. Rouhparvar. Approximate solutions of the Swift--Hohenberg equation with dispersion. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a5/
[1] I. H. Abdel-Halim Hassan, “Differential transformation technique for solving higher-order initial value problems”, Appl. Math. Comput., 154 (2004), 299–311 | MR | Zbl
[2] I. H. Abdel-Halim Hassan, “Application to differential transformation method for solving systems of differential equations”, Appl. Math. Modell, 32:12 (2008), 2552–2559 | DOI | MR | Zbl
[3] F. T. Akyildiz, D. A. Siginer, K. Vajravelu, R. A. Van Gorder, “Analytical and numerical results for the Swifta–Hohenberg equation”, Appl. Math. Comput., 216:1 (2010), 221–226 | MR | Zbl
[4] I. S. Aranson, K. A. Gorshkov, A. S. Lomov, M. I. Rabinovich, “Stable particle-like solutions of multidimensional nonlinear fields”, Phys. D, 43 (1990), 435–453 | DOI | MR | Zbl
[5] A. Arikoglu, I. Ozkol, “Solution of fractional differential equations by using differential transform method”, Chaos, Solitons and Fractals, 34:5 (2007), 1473–1481 | DOI | MR | Zbl
[6] A. Arikoglu, I. Ozkol, “Solution of boundary value problems for integro-differential equations by using differential transform method”, Appl. Math. Comput., 168 (2005), 1145–1158 | MR | Zbl
[7] F. Ayaz, “Solutions of the system of differential equations by differential transform method”, Applied Mathematics and Computation, 147:2 (2004), 547–567 | DOI | MR | Zbl
[8] F. Ayaz, “On the two-dimensional differential transform method”, Appl. Math. Comput, 143 (2003), 361–374 | MR | Zbl
[9] J. Burke, S. M. Houghton, E. Knobloch, “Swift-Hohenberg equation with broken re ection symmetry”, Phys Rev E, 80 (2009), 036202 | DOI
[10] S. Catal, “Solution of free vibration equations of beamon elastic soil by using differential transform method”, Applied Mathematical Modelling, 32:9 (2008), 1744–1757 | DOI | Zbl
[11] L. Yu, Glebsky, L. M. Lerman, “On small stationary localized solutions for the generalized 1-D Swift-Hohenberg equation”, CHAOS, 5 (1995), 424–431 | DOI | MR | Zbl
[12] M. J. Jang, C. L. Chen, “Analysis of the response of a strongly nonlinear damped system using a differential transformation technique”, Appl. Math. Comput., 88 (1997), 137–151 | MR | Zbl
[13] M. J. Jang, C. L. Chen, Y. C. Liu, “Two-dimensional differential transform for partial differential equations”, Applied Mathematics and Computation, 121:2-3 (2001), 261–270 | DOI | MR | Zbl
[14] F. Kangalgil, F. Ayaz, “Solitary wave solutions for the KdV and mKdV equations by differential transform method”, Chaos Solitons Fractals, 41 (2009), 464–472 | DOI | MR | Zbl
[15] Y. Keskin, Ph. D. Thesis, Selcuk University, 2010 (in Turkish) | Zbl
[16] Y. Keskin, G. Oturanç, “Reduced differential transform method for partial differential equations”, Int. J. of Nonl. Sci. and Num. Simulation, 10:6 (2009), 741–749
[17] Y. Keskin, G. Oturanç, “Reduced differential transform method for generalized KdV equations”, Math. Computational Applications, 15:3 (2010), 382–393 | DOI | MR | Zbl
[18] Y. Keskin, G. Oturanç, “Reduced differential transform method for solving linear and nonlinear wave equations”, Iranian J. of Sci. Tech. Transaction A, 34:A2 (2010), 113–122 | MR
[19] N. A. Khan, N. U. Khan, M. Ayaz, A. Mahmood, “Analytical methods for solving the time-fractional SwiftHohenberg (S-H) equation”, Computers and Math. with App., 61 (2011), 2182–2185 | DOI | MR | Zbl
[20] H. Liu, S. Yongzhong, “Differential transform method applied to high index differential algebraic equations”, Appl. Math. Comput., 184 (2007), 748–753 | MR | Zbl
[21] O. O. Ozdemir, M. O. Kaya, “Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method”, J. of Sound and Vibration, 289:1-2 (2006), 413–420 | DOI
[22] Y. Pomeau, S. Zaleski, “Dislocation motion in cellular structures”, J. Phys., 42 (1981), 2710–2726 | MR
[23] H. Rouhparvar, “Computational technique of linear partial differential equations by reduced differential transform method”, Int. J. of Industrial Math., 8:4 (2016), 339–346
[24] J. Swift, P. C. Hohenberg, “Hydrodynamic uctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI
[25] J. K. Zhou, Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, 1986 (in Chinese)