On a linear inverse potential problem with approximate data on the potential field on an approximately given surface
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 55-70

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximate solution of the linear inverse problem for the Newtonian potential for bodies of constant thickness is constructed. The solution is stable with respect to the error in the data on the potential field given on an inaccurately known surface. The problem is reduced to an integral equation of the first kind, the proof of the stability of the solution is based on the Tikhonov regularization method.
@article{EMJ_2023_14_1_a4,
     author = {E. B. Laneev and E. Yu. Ponomarenko},
     title = {On a linear inverse potential problem with approximate data on the potential field on an approximately given surface},
     journal = {Eurasian mathematical journal},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a4/}
}
TY  - JOUR
AU  - E. B. Laneev
AU  - E. Yu. Ponomarenko
TI  - On a linear inverse potential problem with approximate data on the potential field on an approximately given surface
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 55
EP  - 70
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a4/
LA  - en
ID  - EMJ_2023_14_1_a4
ER  - 
%0 Journal Article
%A E. B. Laneev
%A E. Yu. Ponomarenko
%T On a linear inverse potential problem with approximate data on the potential field on an approximately given surface
%J Eurasian mathematical journal
%D 2023
%P 55-70
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a4/
%G en
%F EMJ_2023_14_1_a4
E. B. Laneev; E. Yu. Ponomarenko. On a linear inverse potential problem with approximate data on the potential field on an approximately given surface. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 55-70. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a4/