A note on quasilinear elliptic systems with $L^\infty$-data
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 16-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a weak energy solution for the boundary value problem \begin{eqnarray*} -\mathrm{div}\, a(x, u, Du) = f \text{ in } \Omega,\\ u = 0 \text{ on } \partial\Omega, \end{eqnarray*} where $\Omega$ is a smooth bounded open domain in $\mathbb{R}^n$ ($n\geqslant 3$) and $f\in L^\infty(\Omega;\mathbb{R}^m)$. The existence result is proved using the concept of Young measures.
@article{EMJ_2023_14_1_a1,
     author = {F. Balaadich and E. Azroul},
     title = {A note on quasilinear elliptic systems with $L^\infty$-data},
     journal = {Eurasian mathematical journal},
     pages = {16--24},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/}
}
TY  - JOUR
AU  - F. Balaadich
AU  - E. Azroul
TI  - A note on quasilinear elliptic systems with $L^\infty$-data
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 16
EP  - 24
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/
LA  - en
ID  - EMJ_2023_14_1_a1
ER  - 
%0 Journal Article
%A F. Balaadich
%A E. Azroul
%T A note on quasilinear elliptic systems with $L^\infty$-data
%J Eurasian mathematical journal
%D 2023
%P 16-24
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/
%G en
%F EMJ_2023_14_1_a1
F. Balaadich; E. Azroul. A note on quasilinear elliptic systems with $L^\infty$-data. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 16-24. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/