A note on quasilinear elliptic systems with $L^\infty$-data
Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a weak energy solution for the boundary value problem \begin{eqnarray*} -\mathrm{div}\, a(x, u, Du) = f \text{ in } \Omega,\\ u = 0 \text{ on } \partial\Omega, \end{eqnarray*} where $\Omega$ is a smooth bounded open domain in $\mathbb{R}^n$ ($n\geqslant 3$) and $f\in L^\infty(\Omega;\mathbb{R}^m)$. The existence result is proved using the concept of Young measures.
@article{EMJ_2023_14_1_a1,
     author = {F. Balaadich and E. Azroul},
     title = {A note on quasilinear elliptic systems with $L^\infty$-data},
     journal = {Eurasian mathematical journal},
     pages = {16--24},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/}
}
TY  - JOUR
AU  - F. Balaadich
AU  - E. Azroul
TI  - A note on quasilinear elliptic systems with $L^\infty$-data
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 16
EP  - 24
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/
LA  - en
ID  - EMJ_2023_14_1_a1
ER  - 
%0 Journal Article
%A F. Balaadich
%A E. Azroul
%T A note on quasilinear elliptic systems with $L^\infty$-data
%J Eurasian mathematical journal
%D 2023
%P 16-24
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/
%G en
%F EMJ_2023_14_1_a1
F. Balaadich; E. Azroul. A note on quasilinear elliptic systems with $L^\infty$-data. Eurasian mathematical journal, Tome 14 (2023) no. 1, pp. 16-24. http://geodesic.mathdoc.fr/item/EMJ_2023_14_1_a1/

[1] E. Azroul, F. Balaadich, “Weak solutions for generalized p-Laplacian systems via Young measures”, Moroccan J. of Pure and Appl. Anal. (MJPAA), 4:2 (2018), 76–83 | MR

[2] E. Azroul, F. Balaadich, “Quasilinear elliptic systems in perturbed form”, Int. J. Nonlinear Anal. Appl., 10:2 (2019), 255–266 | Zbl

[3] E. Azroul, F. Balaadich, “A weak solution to quasilinear elliptic problems with perturbed gradient”, Rend. Circ. Mat. Palermo (2), 2020 | DOI | MR

[4] E. Azroul, F. Balaadich, “On strongly quasilinear elliptic systems with weak monotonicity”, J. Appl. Anal., 2021 | DOI | MR

[5] E. Azroul, F. Balaadich, “Existence of solutions for a class of Kirchhoff-type equation via Young measures”, Numer. Funct. Anal. Optim., 2021 | DOI | MR

[6] F. Balaadich, E. Azroul, “Elliptic systems of p-Laplacian type”, Tamkang Journal of Mathematics, 53 (2021) | DOI | MR

[7] F. Balaadich, On p-Kirchhotype parabolic problems, Rendiconti del Circolo Matematico di Palermo Series, 2, 2022 | DOI

[8] F. Balaadich, E. Azroul, “Existence results for fractional p-Laplacian systems via young measures”, Mathematical Modelling and Analysis, 27:2 (2022), 232–241 | DOI | MR | Zbl

[9] J. M. Ball, “A version of the fundamental theorem for Young measures”, PDEs and Continuum Models of Phase Transitions (Nice, 1988), Lecture Notes in Phys., 207–215 | MR

[10] L. C. Berselli, C. R. Grisanti, “On the regularity up to the boundary for certain nonlinear elliptic systems”, Discrete Contin. Dyn. Syst. Ser. S, 9:1 (2016), 53–71 | MR | Zbl

[11] M. Bulíček, G. Cupini, B. Stroffolini, A. Verde, “Existence and regularity results for weak solutions to (p, q)-elliptic systems in divergence form”, Adv. Calc. Var., 11:3 (2018), 273–288 | DOI | MR | Zbl

[12] J. Chabrowski, K. Zhang, “Quasi-monotonicity and perturbated systems with critical growth”, Indiana Univ. Math. J., 1992, 483–504 | DOI | MR | Zbl

[13] G. Cupini, P. Marcellini, E. Mascolo, “Existence and regularity for elliptic equations under p,q-growth”, Adv. Differential Equations, 19 (2014), 693–724 | DOI | MR | Zbl

[14] G. Dal Maso, F. Murat, “Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems”, Nonlinear Anal., 31:3/4 (1998), 405–412 | MR | Zbl

[15] G. Dolzmann, N. Hungerbühler, S. Müller, “Nonlinear elliptic systems with measure-valued right hand side”, Math. Z., 226 (1997), 545–574 | DOI | MR | Zbl

[16] G. Dolzmann, N. Hungerbühler, S. Müller, “Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side”, J. Reine Angew. Math. (Crelles J.), 520 (2000), 1–35 | MR | Zbl

[17] L.C. Evans, Weak convergence methods for nonlinear partial differential equations, Am. Math. Soc., New York, 1990 | MR | Zbl

[18] N. Hungerbühler, “A refinement of Balle's theorem on Young measures”, N.Y. J. Math., 3 (1997), 48–53 | MR | Zbl

[19] N. Hungerbühler, “Quasilinear elliptic systems in divergence form with weak monotonicity”, New York J. Math., 5 (1999), 83–90 | MR | Zbl

[20] T. Kuusi, G. Mingione, “Nonlinear potential theory of elliptic systems”, Nonlinear Anal., 138 (2016), 277–299 | DOI | MR | Zbl

[21] F. Leonetti, E. Rocha, V. Staicu, “Quasilinear elliptic systems with measure data”, Nonlinear Anal., 154 (2017), 210–224 | DOI | MR

[22] F. Leonetti, E. Rocha, V. Staicu, “Smallness and cancellation in some elliptic systems with measure data”, J. Math. Anal. Appl., 465:2 (2018), 885–902 | DOI | MR | Zbl

[23] G. Mingione, “Nonlinear measure data problems”, Milan J. Math., 79 (2011), 429–496 | DOI | MR | Zbl

[24] B. Z. Omarova, Z. A. Sartabanov, “On multiperiodic solutions of perturbed nonlinear autonomous systems with the differentiation operator on a vector field”, Eurasian Mathematical Journal, 12:1 (2021), 68–81 | DOI | MR | Zbl

[25] N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Nonlinear analysis theory and methods, Springer Nature, Cham, 2019 | MR | Zbl

[26] M. A. Ragusa, “Hölder regularity results for solutions of parabolic equations”, Variational Analysis and Application, Nonconvex Optimization and its applications, 79, 2005, 921–934 | DOI | MR | Zbl

[27] A. Vinodkumar, C. Loganathan, S. Vijay, “Approximate controllability of random impulsive quasilinear evolution equation”, Filomat, 34:5 (2020), 1611–1620 | DOI | MR

[28] S. Zhou, “A note on nonlinear elliptic systems involving measures”, Electron. J. Differential Equations, 2000:8 (2000), 1–6 | MR