Kolmogorov widths of the intersection of a finite family of Sobolev classes
Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 88-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article, order estimates for the Kolmogorov widths of the intersection of Sobolev classes on a John domain are obtained.
@article{EMJ_2022_13_4_a7,
     author = {A. A. Vasil'eva},
     title = {Kolmogorov widths of the intersection of a finite family of {Sobolev} classes},
     journal = {Eurasian mathematical journal},
     pages = {88--93},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a7/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Kolmogorov widths of the intersection of a finite family of Sobolev classes
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 88
EP  - 93
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a7/
LA  - en
ID  - EMJ_2022_13_4_a7
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Kolmogorov widths of the intersection of a finite family of Sobolev classes
%J Eurasian mathematical journal
%D 2022
%P 88-93
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a7/
%G en
%F EMJ_2022_13_4_a7
A. A. Vasil'eva. Kolmogorov widths of the intersection of a finite family of Sobolev classes. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 88-93. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a7/

[1] O. V. Besov, “Kolmogorov widths of Sobolev classes on an irregular domain”, Proc. Steklov Inst. Math., 280, 2013, 34–45 | DOI | MR | Zbl

[2] E. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finitedimensional sets”, Math. Notes, 29:5 (1981), 382–388 | DOI | MR

[3] E. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Izv. Math., 36:2 (1991), 435–448 | DOI | MR | Zbl

[4] E. M. Galeev, “Widths of functional classes and finite-dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14 | MR | Zbl

[5] A. Pinkus, n-widths in approximation theory, Springer, Berlin, 1985 | MR | Zbl

[6] Yu. G. Reshetnyak, “Integral representations of differentiable functions in domains with nonsmooth boundary”, Siberian Math. J., 21:6 (1980), 833–839 | DOI | MR

[7] Yu. G. Reshetnyak, “A remark on integral representations of differentiable functions of several variables”, Sibirsk. Mat. Zh., 25:5 (1984), 198–200 (in Russian) | MR | Zbl

[8] Encycl. Math. Sci., 14 (1990), 93–243 | MR

[9] V. M. Tikhomirov, Some problems of approximation theory, Mosk. Gos. Univ., M., 1976 (in Russian)

[10] A. A. Vasil'eva, “Kolmogorov widths of intersections of finite-dimensional balls”, J. Compl., 72 (2022), 101649 | DOI | MR

[11] A. A. Vasil'eva, “Kolmogorov widths of weighted Sobolev classes with “small” singularity sets”, Eurasian Math. J., 10:1 (2019), 89–92 | DOI | MR | Zbl

[12] A. A. Vasil'eva, “Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives”, Eurasian Math. J., 11:4 (2020), 95–100 | DOI | MR | Zbl