A note on Campanato's $L^p$-regularity with continuous coefficients
Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 44-53

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we consider local weak solutions of elliptic equations in variational form with data in $L^p$. We refine the classical approach due to Campanato and Stampacchia and we prove the $L^p$-regularity for the solutions assuming the coefficients merely continuous. This result shows that it is possible to prove the same sharp $L^p$-regularity results that can be proved using classical singular kernel approach also with the variational regularity approach introduced by De Giorgi. This method works for general operators: parabolic, in nonvariational form, of order $2m$.
@article{EMJ_2022_13_4_a2,
     author = {C. Bernardini and V. Vespri and M. Zaccaron},
     title = {A note on {Campanato's} $L^p$-regularity with continuous coefficients},
     journal = {Eurasian mathematical journal},
     pages = {44--53},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/}
}
TY  - JOUR
AU  - C. Bernardini
AU  - V. Vespri
AU  - M. Zaccaron
TI  - A note on Campanato's $L^p$-regularity with continuous coefficients
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 44
EP  - 53
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/
LA  - en
ID  - EMJ_2022_13_4_a2
ER  - 
%0 Journal Article
%A C. Bernardini
%A V. Vespri
%A M. Zaccaron
%T A note on Campanato's $L^p$-regularity with continuous coefficients
%J Eurasian mathematical journal
%D 2022
%P 44-53
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/
%G en
%F EMJ_2022_13_4_a2
C. Bernardini; V. Vespri; M. Zaccaron. A note on Campanato's $L^p$-regularity with continuous coefficients. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 44-53. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/