A note on Campanato's $L^p$-regularity with continuous coefficients
Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 44-53
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we consider local weak solutions of elliptic equations in variational form with data in $L^p$. We refine the classical approach due to Campanato and Stampacchia and we prove the $L^p$-regularity for the solutions assuming the coefficients merely continuous. This result shows that it is possible to prove the same sharp $L^p$-regularity results that can be proved using classical singular kernel approach also with the variational regularity approach introduced by De Giorgi. This method works for general operators: parabolic, in nonvariational form, of order $2m$.
@article{EMJ_2022_13_4_a2,
author = {C. Bernardini and V. Vespri and M. Zaccaron},
title = {A note on {Campanato's} $L^p$-regularity with continuous coefficients},
journal = {Eurasian mathematical journal},
pages = {44--53},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/}
}
TY - JOUR AU - C. Bernardini AU - V. Vespri AU - M. Zaccaron TI - A note on Campanato's $L^p$-regularity with continuous coefficients JO - Eurasian mathematical journal PY - 2022 SP - 44 EP - 53 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/ LA - en ID - EMJ_2022_13_4_a2 ER -
C. Bernardini; V. Vespri; M. Zaccaron. A note on Campanato's $L^p$-regularity with continuous coefficients. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 44-53. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a2/