Nontrivial outer derivations in bimodules over group rings
Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 8-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Paper is devoted to the description of outer derivations for bimodules over group rings. Examples of corresponding bimodules with nontrivial outer derivations are constructed and their properties are investigated, in particular, their dependence on generating sets. Various types of groups by type of growth are investigated: polynomial and exponential.
@article{EMJ_2022_13_4_a0,
     author = {A. A. Arutyunov and A. V. Naianzin},
     title = {Nontrivial outer derivations in bimodules over group rings},
     journal = {Eurasian mathematical journal},
     pages = {8--17},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a0/}
}
TY  - JOUR
AU  - A. A. Arutyunov
AU  - A. V. Naianzin
TI  - Nontrivial outer derivations in bimodules over group rings
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 8
EP  - 17
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a0/
LA  - en
ID  - EMJ_2022_13_4_a0
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%A A. V. Naianzin
%T Nontrivial outer derivations in bimodules over group rings
%J Eurasian mathematical journal
%D 2022
%P 8-17
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a0/
%G en
%F EMJ_2022_13_4_a0
A. A. Arutyunov; A. V. Naianzin. Nontrivial outer derivations in bimodules over group rings. Eurasian mathematical journal, Tome 13 (2022) no. 4, pp. 8-17. http://geodesic.mathdoc.fr/item/EMJ_2022_13_4_a0/

[1] A. A. Arutyunov, “Derivation algebra in noncommutative group algebras”, Proc. Steklov Inst. Math., 308, 2020, 28–34 | DOI | MR | Zbl

[2] A. A. Arutyunov, A combinatorial view on derivations in bimodules, 7 pp., arXiv: 2208.05478

[3] A. A. Arutyunov, A. S. Mishchenko, “A smooth version of Johnson's problem on derivations of group algebras”, Jour. Mat. Sb., 210 (2019), 3–29 | MR | Zbl

[4] A. A. Arutyunov, A. S. Mishchenko, A. I. Shtern, “Derivations of group algebras”, Fundam. Prikl. Mat., 21 (2016), 65–78 | MR

[5] H. G. Dales, Banach algebras ans automatic continuity, Oxford University Press, USA, 2001, 928 pp. | MR

[6] R. I. Grigorchuk, “On the Milnor problem of group growth”, Dokl. Akad. Nauk SSSR, 271 (1983), 30–33 (in Russian) | MR | Zbl

[7] M. L. Gromov, “Groups of polynomial growth and expanding maps”, Publications Mathématiques Des IHES, 53:12 (1981), 53–73 | DOI | MR

[8] B. E. Johnson, “The derivation problem for group algebras of connected locally compact groups”, Journal of the London Mathematical Society, 63:2 (2001), 441–452 https://academic.oup.com/jlms/article/63/2/441/813976 | DOI | MR | Zbl

[9] B. E. Johnson, J. R. Ringrose, “Derivations of operator algebras and discrete group algebras”, Bulletin of the London Mathematical Society, 1:1 (1969) https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/blms/1.1.70 | DOI

[10] V. Losert, “The derivation problem for group algebras”, Annals of Mathematics, 168:1 (2008), 221–246 https://annals.math.princeton.edu/2008/168-1/p06 | DOI | MR | Zbl

[11] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Springer, 2001, 339 pp. | DOI | MR | Zbl

[12] A. Yu. Olshanskii, A Geometry of defining relations in groups, Springer, 1991, 505 pp. | DOI | MR