Propagation of nonsmooth waves under singular perturbations of the wave equation
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 41-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of characteristics for the wave equation can be applied not only for unbounded strings. The method of incident and reflected waves is effectively used in the case of a mixed problem for a bounded string. This method can also be modified for multipoint mixed problems for the wave equation. In this paper, the method of incident and reflected waves is adapted for multi-point problems with discontinuous derivatives. An analogue of the d'Alembert formula for discontinuous multipoint problems for the wave equation in the case of a bounded string is proved.
@article{EMJ_2022_13_3_a3,
     author = {B. E. Kanguzhin},
     title = {Propagation of nonsmooth waves under singular perturbations of the wave equation},
     journal = {Eurasian mathematical journal},
     pages = {41--50},
     year = {2022},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
TI  - Propagation of nonsmooth waves under singular perturbations of the wave equation
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 41
EP  - 50
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/
LA  - en
ID  - EMJ_2022_13_3_a3
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%T Propagation of nonsmooth waves under singular perturbations of the wave equation
%J Eurasian mathematical journal
%D 2022
%P 41-50
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/
%G en
%F EMJ_2022_13_3_a3
B. E. Kanguzhin. Propagation of nonsmooth waves under singular perturbations of the wave equation. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 41-50. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/

[1] G. E. Abduakhitova, B. E. Kanguzhin, “The correct de nition of second-order elliptic operators with point interactions and their resolvents”, Siberian Advances in Mathematics, 30 (2020), 153–161 | DOI

[2] B. Bekbolat, B. E. Kanguzhin, N. Tokmagambetov, “To the question of a multipoint mixed boundary value problem for a wave equation”, News of the National Academy of Sciences of the Republic of Kazakhstan - series physico-mathematical, 326:4 (2019), 16–29

[3] A. M. Gaisin, B. E. Kanguzhin, A. A. Seitova, “Completeness of the exponential system on a segment of the real axis”, Eurasian Math. J., 13:2 (2022), 37–42 | DOI | MR | Zbl

[4] Yu. D. Golovaty, S. S. Man'ko, “Solvable models for the Schrödinger operators with $\delta$-like potentials”, Ukrain. Math. Bull., 6:2 (2009), 169–203 | MR

[5] Russian Math. Surveys, 15:1 (1960), 85–142 | DOI | MR | Zbl

[6] B. E. Kanguzhin, “Changes in a nite of the Laplace operator under delta-like perturbations”, Differential Equations, 55:10 (2019), 1328–1335 | DOI | MR | Zbl

[7] B. Kanguzhin, L. Zhapsarbaeva, Zh. Madibaiuly, “Lagrange formula for differential operators and self-adjoint restrictions of the maximal operator on a tree”, Eurasian Math. J., 10:1 (2019), 16–29 | DOI | MR | Zbl

[8] B. E. Kanguzhin, K. S. Tulenov, “Singular perturbations of Laplace and their resolvents”, Complex Variables and Elliptic Equations, 65:9 (2020), 1433–1444 | DOI | MR | Zbl

[9] B. E. Kanguzhin, K. S. Tulenov, “Correctness of the de nition of the Laplace operator with delta-like potentials”, Complex Variables and Elliptic Equations, 67:4 (2022), 898–920 | DOI | MR | Zbl

[10] B. E. Kanguzhin, “Weinstein criteria and regularized traces in case of transverse vibrations of an elastic string with springs”, Differential Equations, 54:1 (2018), 7–12 | DOI | MR | Zbl

[11] A. I. Komech, Practical solution of equations of mathematical physics, MSU, M., 1986 (in Russian)

[12] A. S. Kostenko, M. M. Malamud, “1-D Schrödinger operators with local point interactions on a discrete set”, J. Differ. Equat., 249 (2010), 253–304 | DOI | MR | Zbl

[13] L. D. Landau, E. M. Lifshits, Theoretical physics, v. III, Quantum mechanics: nonrelativistic theory, Third edition, “Nauka”, M., 1974 (in Russian) | MR

[14] V. S. Mineev, “The physics of self-adjoint extensions: one-dimensional scattering problem for the Coulomb potential”, Theoret. and Math. Phys., 140 (2004), 1157–1174 | DOI | MR | Zbl

[15] M. A. Naimark, Linear differential operators, “Nauka”, M., 1969 (in Russian) | MR | Zbl

[16] M. Nursultanov, “Spectral properties of the Schrödinger operator with $\delta$-distribution”, Mathematical Notes, 100:2 (2016), 263–275 | DOI | MR | Zbl

[17] B. S. Pavlov, “The theory of extensions and explicitly-soluble models”, Russian Math. Surveys, 42:6 (1987), 127–168 | DOI | MR | Zbl

[18] I. Yu. Popov, D. A. Zubok, “Two physical applications of the Laplace operator perturbed on a null set”, Theoret. and Math. Phys., 119:2 (1999), 629–639 | DOI | MR | Zbl

[19] A. M. Savchuk, A. A. Shkalikov, “Sturm-liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | MR | Zbl

[20] Yu. G. Shondin, “Perturbations of elliptic operators on high codimension subsets and the extension theory on an inde nite metric space”, J. Math. Sci. (New York), 87:5 (1997), 3941–3970 | DOI | MR

[21] V. S. Vladimirov, The equations of mathematical physics, Fourth edition, “Nauka”, M., 1986 (in Russian) | MR