Propagation of nonsmooth waves under singular perturbations of the wave equation
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of characteristics for the wave equation can be applied not only for unbounded strings. The method of incident and reflected waves is effectively used in the case of a mixed problem for a bounded string. This method can also be modified for multipoint mixed problems for the wave equation. In this paper, the method of incident and reflected waves is adapted for multi-point problems with discontinuous derivatives. An analogue of the d'Alembert formula for discontinuous multipoint problems for the wave equation in the case of a bounded string is proved.
@article{EMJ_2022_13_3_a3,
     author = {B. E. Kanguzhin},
     title = {Propagation of nonsmooth waves under singular perturbations of the wave equation},
     journal = {Eurasian mathematical journal},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
TI  - Propagation of nonsmooth waves under singular perturbations of the wave equation
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 41
EP  - 50
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/
LA  - en
ID  - EMJ_2022_13_3_a3
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%T Propagation of nonsmooth waves under singular perturbations of the wave equation
%J Eurasian mathematical journal
%D 2022
%P 41-50
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/
%G en
%F EMJ_2022_13_3_a3
B. E. Kanguzhin. Propagation of nonsmooth waves under singular perturbations of the wave equation. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 41-50. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/

[1] G. E. Abduakhitova, B. E. Kanguzhin, “The correct de nition of second-order elliptic operators with point interactions and their resolvents”, Siberian Advances in Mathematics, 30 (2020), 153–161 | DOI

[2] B. Bekbolat, B. E. Kanguzhin, N. Tokmagambetov, “To the question of a multipoint mixed boundary value problem for a wave equation”, News of the National Academy of Sciences of the Republic of Kazakhstan - series physico-mathematical, 326:4 (2019), 16–29

[3] A. M. Gaisin, B. E. Kanguzhin, A. A. Seitova, “Completeness of the exponential system on a segment of the real axis”, Eurasian Math. J., 13:2 (2022), 37–42 | DOI | MR | Zbl

[4] Yu. D. Golovaty, S. S. Man'ko, “Solvable models for the Schrödinger operators with $\delta$-like potentials”, Ukrain. Math. Bull., 6:2 (2009), 169–203 | MR

[5] Russian Math. Surveys, 15:1 (1960), 85–142 | DOI | MR | Zbl

[6] B. E. Kanguzhin, “Changes in a nite of the Laplace operator under delta-like perturbations”, Differential Equations, 55:10 (2019), 1328–1335 | DOI | MR | Zbl

[7] B. Kanguzhin, L. Zhapsarbaeva, Zh. Madibaiuly, “Lagrange formula for differential operators and self-adjoint restrictions of the maximal operator on a tree”, Eurasian Math. J., 10:1 (2019), 16–29 | DOI | MR | Zbl

[8] B. E. Kanguzhin, K. S. Tulenov, “Singular perturbations of Laplace and their resolvents”, Complex Variables and Elliptic Equations, 65:9 (2020), 1433–1444 | DOI | MR | Zbl

[9] B. E. Kanguzhin, K. S. Tulenov, “Correctness of the de nition of the Laplace operator with delta-like potentials”, Complex Variables and Elliptic Equations, 67:4 (2022), 898–920 | DOI | MR | Zbl

[10] B. E. Kanguzhin, “Weinstein criteria and regularized traces in case of transverse vibrations of an elastic string with springs”, Differential Equations, 54:1 (2018), 7–12 | DOI | MR | Zbl

[11] A. I. Komech, Practical solution of equations of mathematical physics, MSU, M., 1986 (in Russian)

[12] A. S. Kostenko, M. M. Malamud, “1-D Schrödinger operators with local point interactions on a discrete set”, J. Differ. Equat., 249 (2010), 253–304 | DOI | MR | Zbl

[13] L. D. Landau, E. M. Lifshits, Theoretical physics, v. III, Quantum mechanics: nonrelativistic theory, Third edition, “Nauka”, M., 1974 (in Russian) | MR

[14] V. S. Mineev, “The physics of self-adjoint extensions: one-dimensional scattering problem for the Coulomb potential”, Theoret. and Math. Phys., 140 (2004), 1157–1174 | DOI | MR | Zbl

[15] M. A. Naimark, Linear differential operators, “Nauka”, M., 1969 (in Russian) | MR | Zbl

[16] M. Nursultanov, “Spectral properties of the Schrödinger operator with $\delta$-distribution”, Mathematical Notes, 100:2 (2016), 263–275 | DOI | MR | Zbl

[17] B. S. Pavlov, “The theory of extensions and explicitly-soluble models”, Russian Math. Surveys, 42:6 (1987), 127–168 | DOI | MR | Zbl

[18] I. Yu. Popov, D. A. Zubok, “Two physical applications of the Laplace operator perturbed on a null set”, Theoret. and Math. Phys., 119:2 (1999), 629–639 | DOI | MR | Zbl

[19] A. M. Savchuk, A. A. Shkalikov, “Sturm-liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | MR | Zbl

[20] Yu. G. Shondin, “Perturbations of elliptic operators on high codimension subsets and the extension theory on an inde nite metric space”, J. Math. Sci. (New York), 87:5 (1997), 3941–3970 | DOI | MR

[21] V. S. Vladimirov, The equations of mathematical physics, Fourth edition, “Nauka”, M., 1986 (in Russian) | MR