Propagation of nonsmooth waves under singular perturbations of the wave equation
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 41-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of characteristics for the wave equation can be applied not only for unbounded strings. The method of incident and reflected waves is effectively used in the case of a mixed problem for a bounded string. This method can also be modified for multipoint mixed problems for the wave equation. In this paper, the method of incident and reflected waves is adapted for multi-point problems with discontinuous derivatives. An analogue of the d'Alembert formula for discontinuous multipoint problems for the wave equation in the case of a bounded string is proved.
@article{EMJ_2022_13_3_a3,
     author = {B. E. Kanguzhin},
     title = {Propagation of nonsmooth waves under singular perturbations of the wave equation},
     journal = {Eurasian mathematical journal},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
TI  - Propagation of nonsmooth waves under singular perturbations of the wave equation
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 41
EP  - 50
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/
LA  - en
ID  - EMJ_2022_13_3_a3
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%T Propagation of nonsmooth waves under singular perturbations of the wave equation
%J Eurasian mathematical journal
%D 2022
%P 41-50
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/
%G en
%F EMJ_2022_13_3_a3
B. E. Kanguzhin. Propagation of nonsmooth waves under singular perturbations of the wave equation. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 41-50. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a3/