$\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 33-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a Banach algebra and $\varphi$ be a continuous homomorphism on $A$. We define the notions of a $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebra $A$, and consider relations between them and some their properties.
@article{EMJ_2022_13_3_a2,
     author = {Z. Ghorbani},
     title = {$\varphi$-approximate biprojective and $\varphi$-approximate amenable {Banach} algebras},
     journal = {Eurasian mathematical journal},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/}
}
TY  - JOUR
AU  - Z. Ghorbani
TI  - $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 33
EP  - 40
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/
LA  - en
ID  - EMJ_2022_13_3_a2
ER  - 
%0 Journal Article
%A Z. Ghorbani
%T $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras
%J Eurasian mathematical journal
%D 2022
%P 33-40
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/
%G en
%F EMJ_2022_13_3_a2
Z. Ghorbani. $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 33-40. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/