$\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a Banach algebra and $\varphi$ be a continuous homomorphism on $A$. We define the notions of a $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebra $A$, and consider relations between them and some their properties.
@article{EMJ_2022_13_3_a2,
     author = {Z. Ghorbani},
     title = {$\varphi$-approximate biprojective and $\varphi$-approximate amenable {Banach} algebras},
     journal = {Eurasian mathematical journal},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/}
}
TY  - JOUR
AU  - Z. Ghorbani
TI  - $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 33
EP  - 40
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/
LA  - en
ID  - EMJ_2022_13_3_a2
ER  - 
%0 Journal Article
%A Z. Ghorbani
%T $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras
%J Eurasian mathematical journal
%D 2022
%P 33-40
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/
%G en
%F EMJ_2022_13_3_a2
Z. Ghorbani. $\varphi$-approximate biprojective and $\varphi$-approximate amenable Banach algebras. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 33-40. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a2/

[1] O. Yu. Aristov, “Biprojective algebras and operator spaces”, J. Math. Sci., 111 (2002), 3339–3386 | DOI | MR | Zbl

[2] F. F. Bonsall, J. Duncan, Complete normed algebra, Springer-Verlag, 1973 | MR

[3] H. G. Dales, Banach algebras, automatic continuity, London Mathematical Society Monographs, 24, Clarendon Press, Oxford, 2000 | MR | Zbl

[4] Z. Ghorbani, M. Lashkarizadeh Bami, “$\varphi$-approximate biflat and $\varphi$-amenable Banach algebras”, Proc. Ro. Acad. Series A, 13 (2012), 3–10 | MR | Zbl

[5] Z. Ghorbani, J. Baradaran, “$\varphi$-approximate biprojective and ($\varphi$, $\psi$)-amenable Banach algebras”, Jordan. J. Math. Stat., 13 (2020), 363–377 | MR | Zbl

[6] A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), 41, Kluwer Academic Publishers Group, Dordrecht, 1989 | DOI | MR

[7] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, 1972 | MR | Zbl

[8] B. E. Johnson, “Approximate diagonals and cohomology of certain annihilator Banach algebras”, Amer. J. Math., 94 (1972), 685–698 | DOI | MR | Zbl

[9] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., New York, 1955 | MR | Zbl

[10] M. Mirzavaziri, M. S. Moslehian, “$\sigma$-derivations in Banach algebras”, Bull. Iranian Math. Soc., 2006, 65–78 | MR | Zbl

[11] M. Mirzavaziri, M. S. Moslehian, “$(\sigma-\tau)$-amenability of $C^*$-algebras”, Georgian Math. J., 18 (2011), 137–145 | DOI | MR | Zbl

[12] M. Mirzavaziri, M. S. Moslehian, “Automatic continuity of $\sigma$-derivations in $C^*$-algebras”, Proc. Amer. Math. Soc., 134 (2006), 3319–3327 | DOI | MR | Zbl

[13] M. S. Moslehian, A. N. Motlagh, “Some notes on $(\sigma, \tau)$-amenability of Banach algebras”, Stud. Univ. Babes-Bolyai Math., 53 (2008), 57–68 | MR | Zbl

[14] H. Reiter, L-algebras and Segal algebras, Lecture Notes in Mathematics, 231, Springer, Berlin, 1971 | DOI | MR | Zbl

[15] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, 1774, Springer, 2002 | DOI | MR | Zbl