Discontinuous matrix Sturm--Liouville problems
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 8-22

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate discontinuous matrix Sturm–Liouville problems. We establish an existence and uniqueness result. Next, we introduce the corresponding maximal and minimal operators for this problem and some properties of these operators are investigated. Moreover, we give a criterion under which these operators are self-adjoint. Finally, we give an eigenfunction expansion.
@article{EMJ_2022_13_3_a0,
     author = {B. P. Allahverdiev and H. Tuna},
     title = {Discontinuous matrix {Sturm--Liouville} problems},
     journal = {Eurasian mathematical journal},
     pages = {8--22},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
TI  - Discontinuous matrix Sturm--Liouville problems
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 8
EP  - 22
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/
LA  - en
ID  - EMJ_2022_13_3_a0
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%T Discontinuous matrix Sturm--Liouville problems
%J Eurasian mathematical journal
%D 2022
%P 8-22
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/
%G en
%F EMJ_2022_13_3_a0
B. P. Allahverdiev; H. Tuna. Discontinuous matrix Sturm--Liouville problems. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 8-22. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/