Discontinuous matrix Sturm--Liouville problems
Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 8-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate discontinuous matrix Sturm–Liouville problems. We establish an existence and uniqueness result. Next, we introduce the corresponding maximal and minimal operators for this problem and some properties of these operators are investigated. Moreover, we give a criterion under which these operators are self-adjoint. Finally, we give an eigenfunction expansion.
@article{EMJ_2022_13_3_a0,
     author = {B. P. Allahverdiev and H. Tuna},
     title = {Discontinuous matrix {Sturm--Liouville} problems},
     journal = {Eurasian mathematical journal},
     pages = {8--22},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
TI  - Discontinuous matrix Sturm--Liouville problems
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 8
EP  - 22
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/
LA  - en
ID  - EMJ_2022_13_3_a0
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%T Discontinuous matrix Sturm--Liouville problems
%J Eurasian mathematical journal
%D 2022
%P 8-22
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/
%G en
%F EMJ_2022_13_3_a0
B. P. Allahverdiev; H. Tuna. Discontinuous matrix Sturm--Liouville problems. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 8-22. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/

[1] V. Ala, K. R. Mamedov, “Basisness of eigenfunctions of a discontinuous Sturm Liouville operator”, J. Adv. Math. Stud., 13:1 (2020), 81–87 | MR | Zbl

[2] B. P. Allahverdiev, H. Tuna, “Extensions of the matrix-valued q-Sturm Liouville operators”, Turk. J. Math., 45 (2021), 1479–1494 | DOI | MR

[3] B. P. Allahverdiev, H. Tuna, “Discontinuous linear Hamiltonian systems”, Filomat, 36:3 (2022), 813–827 | DOI | MR

[4] B. P. Allahverdiev, H. Tuna, “On extensions of matrix-valued Hahn–Sturm–Liouville operators”, Annal. Univers. Maria Curie-Sklodowska, sect. A Mathematica, [S.l.], 75:2 (2021), 1–12 | MR | Zbl

[5] B. P. Allahverdiev, H. Tuna, “q-Hamiltonian systems”, Turk. J. Math., 44 (2020), 2241–2258 | DOI | MR

[6] F. V. Atkinson, Discrete and continuous boundary problems, Acad. Press Inc., New York, 1964 | MR | Zbl

[7] K. Aydemir, O. Sh. Mukhtarov, “Generalized Fourier series as Green's function expansion for multi-interval Sturm–Liouville systems”, Mediterr. J. Math., 14 (2017), 100 | DOI | MR | Zbl

[8] Y. Aygar, E. Bairamov, “Jost solution and the spectral properties of the matrix-valued difference operators”, Appl. Math. Comput., 218:3 (2012), 9676–9681 | MR | Zbl

[9] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and application, Pitman Monographs and Surveys in Pure and Applied Mathematics, 66, Longman Scientific Technical, Harlow, 1993 | MR

[10] E. Bairamov, S. Cebesoy, “Spectral singularities of the matrix Schrödinger equations”, Hacettepe J. Math. Statist., 45:4 (2016), 1007–1014 | MR | Zbl

[11] E. Bairamov, E. Uğurlu, “On the characteristic values of the real component of a dissipative boundary value transmission problem”, Appl. Math. Comput., 218 (2012), 9657–9663 | MR | Zbl

[12] E. Bairamov, E. Uğurlu, “The determinants of dissipative Sturm–Liouville operators with transmission conditions”, Math. Comput. Model., 53 (2011), 805–813 | DOI | MR | Zbl

[13] E. Bairamov, E. Uğurlu, “Krein's theorems for a dissipative boundary value transmission problem”, Complex Anal. Oper. Theory, 7 (2013), 831–842 | DOI | MR | Zbl

[14] E. Bairamov, E. Uğurlu, “Krein's theorem for the dissipative operators with finite impulsive effect”, Numer. Funct. Anal. Optimiz., 36 (2015), 256–270 | DOI | MR | Zbl

[15] G. Bastard, J. A. Brum, “Electronic states in semi conductor heterostructures”, IEEE J. Quant. Electron., 22 (1986), 1625–1644 | DOI

[16] G. Bastard, Wave mechanics applied to semi conductor Hetero structures, Editions de Physique, Paris, 1989

[17] R. Beals, G. M. Henkin, N. N. Novikova, “The inverse boundary problem for the Rayleigh system”, J. Math. Phys., 36:12 (1995), 6688–6708 | DOI | MR | Zbl

[18] N. Bondarenko, “Spectral analysis for the matrix Sturm Liouville operator on a finite interval”, Tamkang J. Math., 42:3 (2011), 305–327 | DOI | MR | Zbl

[19] N. Bondarenko, “Matrix Sturm–Liouville equation with a Bessel-type singularity on a finite interval”, Anal. Math. Phys., 7:1 (2017), 77–92 | DOI | MR | Zbl

[20] A. Boutet de Monvel, D. Shepelsky, “Inverse scattering problem for anisotropic media”, J. Math. Phys., 36:7 (1995), 3443–3453 | DOI | MR | Zbl

[21] F. A. Cetinkaya, K. R. Mamedov, “A boundary value problem with retarded argument and discontinuous coefficent in the differential equation”, Azerb. J. Math., 7:1 (2017), 135–145 | MR | Zbl

[22] V. M. Chabanov, “Recovering the M-channel Sturm Liouville operator from $M+1$ spectra”, J. Math. Phys., 45:11 (2004), 4255–4260 | DOI | MR | Zbl

[23] C. Coskun, M. Olgun, “Principal functions of non-selfadjoint matrix Sturm–Liouville equations”, J. Comput. Appl. Math., 235:16 (2011), 4834–4838 | DOI | MR | Zbl

[24] A. M. Krall, Hilbert Space, Boundary value problems and orthogonal polynomials, Birkhäuser Verlag, Basel, 2002 | MR | Zbl

[25] F. R. Lapwood, T. Usami, Free oscillations of the earth, Cambridge University Press, Cambridge, 1981 | Zbl

[26] A. V. Likov, Yu. A. Mikhailov, The theory of heat and mass transfer, Translated from Russian by I. Shechtman, Israel Program for Scientific Translations, Jerusalem, 1965 | MR

[27] O. N. Litvinenko, V. I. Soshnikov, The theory of heteregenous lines and their applications in Radio Engineering, Radio, M., 1964 (in Russian)

[28] K. R. Mamedov, “Spectral expansion formula for a discontinuous Sturm–Liouville problem”, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 40 (2014), 275–282 | MR | Zbl

[29] K. R. Mamedov, “On an inverse scattering problem for a discontinuous Sturm–Liouville equation with a spectral parameter in the boundary condition”, Bound. Value Probl., 2010 (2010), 171967, 17 pp. | DOI | MR | Zbl

[30] K. R. Mamedov, N. Palamut, “On a direct problem of scattering theory for a class of Sturm–Liouville operator with discontinuous coefficient”, Proc. Jangjeon Math. Soc., 12:2 (2009), 243–251 | MR | Zbl

[31] O. Sh. Mukhtarov, “Discontinuous boundary-value problem with spectral parameter in boundary conditions”, Turkish J. Math., 18 (1994), 183–192 | MR | Zbl

[32] O. Sh. Mukhtarov, K. Aydemir, “The eigenvalue problem with Interaction conditions at one interior singular point”, Filomat, 31:17 (2017), 5411–5420 | DOI | MR | Zbl

[33] Olğar, K. Aydemir, “Resolvent operator and spectrum of new type boundary value problems”, Filomat, 29:7 (2015), 1671–1680 | DOI | MR | Zbl

[34] H. Olğar, O.Sh. Mukhtarov, “Weak eigenfunctions of two-Interval Sturm–Liouville problems together with interaction conditions”, J. Math. Phys., 58 (2017), 042201 | DOI | MR | Zbl

[35] V. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Probl., 22 (2006), 1139–1149 | DOI | MR | Zbl

[36] A. Zettl, Sturm Liouville theory, Mathematical Surveys and Monographs, 121, American Mathematical Society, 2005 | MR | Zbl