Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_3_a0, author = {B. P. Allahverdiev and H. Tuna}, title = {Discontinuous matrix {Sturm--Liouville} problems}, journal = {Eurasian mathematical journal}, pages = {8--22}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/} }
B. P. Allahverdiev; H. Tuna. Discontinuous matrix Sturm--Liouville problems. Eurasian mathematical journal, Tome 13 (2022) no. 3, pp. 8-22. http://geodesic.mathdoc.fr/item/EMJ_2022_13_3_a0/
[1] V. Ala, K. R. Mamedov, “Basisness of eigenfunctions of a discontinuous Sturm Liouville operator”, J. Adv. Math. Stud., 13:1 (2020), 81–87 | MR | Zbl
[2] B. P. Allahverdiev, H. Tuna, “Extensions of the matrix-valued q-Sturm Liouville operators”, Turk. J. Math., 45 (2021), 1479–1494 | DOI | MR
[3] B. P. Allahverdiev, H. Tuna, “Discontinuous linear Hamiltonian systems”, Filomat, 36:3 (2022), 813–827 | DOI | MR
[4] B. P. Allahverdiev, H. Tuna, “On extensions of matrix-valued Hahn–Sturm–Liouville operators”, Annal. Univers. Maria Curie-Sklodowska, sect. A Mathematica, [S.l.], 75:2 (2021), 1–12 | MR | Zbl
[5] B. P. Allahverdiev, H. Tuna, “q-Hamiltonian systems”, Turk. J. Math., 44 (2020), 2241–2258 | DOI | MR
[6] F. V. Atkinson, Discrete and continuous boundary problems, Acad. Press Inc., New York, 1964 | MR | Zbl
[7] K. Aydemir, O. Sh. Mukhtarov, “Generalized Fourier series as Green's function expansion for multi-interval Sturm–Liouville systems”, Mediterr. J. Math., 14 (2017), 100 | DOI | MR | Zbl
[8] Y. Aygar, E. Bairamov, “Jost solution and the spectral properties of the matrix-valued difference operators”, Appl. Math. Comput., 218:3 (2012), 9676–9681 | MR | Zbl
[9] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and application, Pitman Monographs and Surveys in Pure and Applied Mathematics, 66, Longman Scientific Technical, Harlow, 1993 | MR
[10] E. Bairamov, S. Cebesoy, “Spectral singularities of the matrix Schrödinger equations”, Hacettepe J. Math. Statist., 45:4 (2016), 1007–1014 | MR | Zbl
[11] E. Bairamov, E. Uğurlu, “On the characteristic values of the real component of a dissipative boundary value transmission problem”, Appl. Math. Comput., 218 (2012), 9657–9663 | MR | Zbl
[12] E. Bairamov, E. Uğurlu, “The determinants of dissipative Sturm–Liouville operators with transmission conditions”, Math. Comput. Model., 53 (2011), 805–813 | DOI | MR | Zbl
[13] E. Bairamov, E. Uğurlu, “Krein's theorems for a dissipative boundary value transmission problem”, Complex Anal. Oper. Theory, 7 (2013), 831–842 | DOI | MR | Zbl
[14] E. Bairamov, E. Uğurlu, “Krein's theorem for the dissipative operators with finite impulsive effect”, Numer. Funct. Anal. Optimiz., 36 (2015), 256–270 | DOI | MR | Zbl
[15] G. Bastard, J. A. Brum, “Electronic states in semi conductor heterostructures”, IEEE J. Quant. Electron., 22 (1986), 1625–1644 | DOI
[16] G. Bastard, Wave mechanics applied to semi conductor Hetero structures, Editions de Physique, Paris, 1989
[17] R. Beals, G. M. Henkin, N. N. Novikova, “The inverse boundary problem for the Rayleigh system”, J. Math. Phys., 36:12 (1995), 6688–6708 | DOI | MR | Zbl
[18] N. Bondarenko, “Spectral analysis for the matrix Sturm Liouville operator on a finite interval”, Tamkang J. Math., 42:3 (2011), 305–327 | DOI | MR | Zbl
[19] N. Bondarenko, “Matrix Sturm–Liouville equation with a Bessel-type singularity on a finite interval”, Anal. Math. Phys., 7:1 (2017), 77–92 | DOI | MR | Zbl
[20] A. Boutet de Monvel, D. Shepelsky, “Inverse scattering problem for anisotropic media”, J. Math. Phys., 36:7 (1995), 3443–3453 | DOI | MR | Zbl
[21] F. A. Cetinkaya, K. R. Mamedov, “A boundary value problem with retarded argument and discontinuous coefficent in the differential equation”, Azerb. J. Math., 7:1 (2017), 135–145 | MR | Zbl
[22] V. M. Chabanov, “Recovering the M-channel Sturm Liouville operator from $M+1$ spectra”, J. Math. Phys., 45:11 (2004), 4255–4260 | DOI | MR | Zbl
[23] C. Coskun, M. Olgun, “Principal functions of non-selfadjoint matrix Sturm–Liouville equations”, J. Comput. Appl. Math., 235:16 (2011), 4834–4838 | DOI | MR | Zbl
[24] A. M. Krall, Hilbert Space, Boundary value problems and orthogonal polynomials, Birkhäuser Verlag, Basel, 2002 | MR | Zbl
[25] F. R. Lapwood, T. Usami, Free oscillations of the earth, Cambridge University Press, Cambridge, 1981 | Zbl
[26] A. V. Likov, Yu. A. Mikhailov, The theory of heat and mass transfer, Translated from Russian by I. Shechtman, Israel Program for Scientific Translations, Jerusalem, 1965 | MR
[27] O. N. Litvinenko, V. I. Soshnikov, The theory of heteregenous lines and their applications in Radio Engineering, Radio, M., 1964 (in Russian)
[28] K. R. Mamedov, “Spectral expansion formula for a discontinuous Sturm–Liouville problem”, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 40 (2014), 275–282 | MR | Zbl
[29] K. R. Mamedov, “On an inverse scattering problem for a discontinuous Sturm–Liouville equation with a spectral parameter in the boundary condition”, Bound. Value Probl., 2010 (2010), 171967, 17 pp. | DOI | MR | Zbl
[30] K. R. Mamedov, N. Palamut, “On a direct problem of scattering theory for a class of Sturm–Liouville operator with discontinuous coefficient”, Proc. Jangjeon Math. Soc., 12:2 (2009), 243–251 | MR | Zbl
[31] O. Sh. Mukhtarov, “Discontinuous boundary-value problem with spectral parameter in boundary conditions”, Turkish J. Math., 18 (1994), 183–192 | MR | Zbl
[32] O. Sh. Mukhtarov, K. Aydemir, “The eigenvalue problem with Interaction conditions at one interior singular point”, Filomat, 31:17 (2017), 5411–5420 | DOI | MR | Zbl
[33] Olğar, K. Aydemir, “Resolvent operator and spectrum of new type boundary value problems”, Filomat, 29:7 (2015), 1671–1680 | DOI | MR | Zbl
[34] H. Olğar, O.Sh. Mukhtarov, “Weak eigenfunctions of two-Interval Sturm–Liouville problems together with interaction conditions”, J. Math. Phys., 58 (2017), 042201 | DOI | MR | Zbl
[35] V. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Probl., 22 (2006), 1139–1149 | DOI | MR | Zbl
[36] A. Zettl, Sturm Liouville theory, Mathematical Surveys and Monographs, 121, American Mathematical Society, 2005 | MR | Zbl