Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_2_a7, author = {M. Zohrehvand}, title = {IPHP transformations on tangent bundle of a {Riemannian} manifold with respect to a class of lift metrics}, journal = {Eurasian mathematical journal}, pages = {82--92}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/} }
TY - JOUR AU - M. Zohrehvand TI - IPHP transformations on tangent bundle of a Riemannian manifold with respect to a class of lift metrics JO - Eurasian mathematical journal PY - 2022 SP - 82 EP - 92 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/ LA - en ID - EMJ_2022_13_2_a7 ER -
M. Zohrehvand. IPHP transformations on tangent bundle of a Riemannian manifold with respect to a class of lift metrics. Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 82-92. http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/
[1] M. T.K. Abbassi, M. Sarih, “On natural metrics on tangent bundles of Riemannian manifolds”, Arch. Math. (Brno), 41 (2005), 71–92 | MR | Zbl
[2] M. T.K. Abbassi, M. Sarih, “On Riemannian $g$-natural metrics of the form $ag^s+bg^h+cg^v$ on the tangent bundle of a Riemannian manifold $(M, g)$”, Mediterr. J. Math., 2 (2005), 19–43 | DOI | MR | Zbl
[3] V. Cortes, C. Mayer, T. Mohaupt, F. Saueressig, “Special geometry of Euclidean supersymmetry I. Vector multiplets”, J. High Energy Phys., 03 (2004), 028 | DOI | MR
[4] V. Cruceanu, P. M. Gadea, J. Munoz Masque, “Para-Hermitian and Para-Kahler Manifolds”, Quaderni Inst. Mat. Messina, 2 (1995), 1–70
[5] F. Etayo, P. M. Gadea, “Paraholomorphically projective vector field”, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 38 (1992), 201–210 | MR | Zbl
[6] M. Iscan, A. Magden, “In nitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection”, Differ. Geom. Dyn. Syst., 10 (2008), 170–177 | MR | Zbl
[7] M. Prvanovic, “Holomorphically projective transformations in a locally product spaces”, Math. Balkanica (N.S.), 1 (1971), 195–213 | MR | Zbl
[8] P. K. Rasevskii, “The scalar field in a stratified space”, Trudy Sem. Vekt. Tenz. Anal., 6 (1948), 225–248 | MR
[9] A. A. Salimov, M. Iscan, F. Etayo, “Paraholomorphic B-manifold and its properties”, Topology Appl., 154 (2007), 925–933 | DOI | MR | Zbl
[10] K. Yano, The Theory of Lie Derivatives and Its Applications, Franklin Classics Trade Press, 2018 | MR
[11] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: differential geometry, Marcel Dekker Inc., New York, USA, 1973 | MR | Zbl
[12] K. Yano, S. Kobayashi, “Prolongation of tensor elds and connections to tangent bundles. I; II; III”, J. Math. Soc. Japan, 18 (1966), 194–210 ; 236–246 ; (1967), 486–488 | MR | Zbl | Zbl | Zbl