IPHP transformations on tangent bundle of a Riemannian manifold with respect to a class of lift metrics
Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 82-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(M_n, g)$ be an $n$-dimensional Riemannian manifold and $TM_n$ its tangent bundle. In this article, we study the infinitesimal paraholomorphically projective (IPHP) transformations on $TM_n$ with respect to the Levi-Civita connection of the pseudo-Riemannian metric $\tilde{g}=\alpha g^S+\beta g^C+\gamma g^V$, where $\alpha$, $\beta$ and $\gamma$ are real constants with $\alpha(\alpha+\gamma)-\beta^2\ne0$ and $g^S$, $g^C$ and $g^V$ are diagonal lift, complete lift and vertical lift of $g$, respectively. We determine this type of transformations and then prove that if $(TM_n,\tilde{g})$ has a non-affine infinitesimal paraholomorphically projective transformation, then $M_n$ and $TM_n$ are locally flat.
@article{EMJ_2022_13_2_a7,
     author = {M. Zohrehvand},
     title = {IPHP transformations on tangent bundle of a {Riemannian} manifold with respect to a class of lift metrics},
     journal = {Eurasian mathematical journal},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/}
}
TY  - JOUR
AU  - M. Zohrehvand
TI  - IPHP transformations on tangent bundle of a Riemannian manifold with respect to a class of lift metrics
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 82
EP  - 92
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/
LA  - en
ID  - EMJ_2022_13_2_a7
ER  - 
%0 Journal Article
%A M. Zohrehvand
%T IPHP transformations on tangent bundle of a Riemannian manifold with respect to a class of lift metrics
%J Eurasian mathematical journal
%D 2022
%P 82-92
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/
%G en
%F EMJ_2022_13_2_a7
M. Zohrehvand. IPHP transformations on tangent bundle of a Riemannian manifold with respect to a class of lift metrics. Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 82-92. http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a7/

[1] M. T.K. Abbassi, M. Sarih, “On natural metrics on tangent bundles of Riemannian manifolds”, Arch. Math. (Brno), 41 (2005), 71–92 | MR | Zbl

[2] M. T.K. Abbassi, M. Sarih, “On Riemannian $g$-natural metrics of the form $ag^s+bg^h+cg^v$ on the tangent bundle of a Riemannian manifold $(M, g)$”, Mediterr. J. Math., 2 (2005), 19–43 | DOI | MR | Zbl

[3] V. Cortes, C. Mayer, T. Mohaupt, F. Saueressig, “Special geometry of Euclidean supersymmetry I. Vector multiplets”, J. High Energy Phys., 03 (2004), 028 | DOI | MR

[4] V. Cruceanu, P. M. Gadea, J. Munoz Masque, “Para-Hermitian and Para-Kahler Manifolds”, Quaderni Inst. Mat. Messina, 2 (1995), 1–70

[5] F. Etayo, P. M. Gadea, “Paraholomorphically projective vector field”, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 38 (1992), 201–210 | MR | Zbl

[6] M. Iscan, A. Magden, “In nitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection”, Differ. Geom. Dyn. Syst., 10 (2008), 170–177 | MR | Zbl

[7] M. Prvanovic, “Holomorphically projective transformations in a locally product spaces”, Math. Balkanica (N.S.), 1 (1971), 195–213 | MR | Zbl

[8] P. K. Rasevskii, “The scalar field in a stratified space”, Trudy Sem. Vekt. Tenz. Anal., 6 (1948), 225–248 | MR

[9] A. A. Salimov, M. Iscan, F. Etayo, “Paraholomorphic B-manifold and its properties”, Topology Appl., 154 (2007), 925–933 | DOI | MR | Zbl

[10] K. Yano, The Theory of Lie Derivatives and Its Applications, Franklin Classics Trade Press, 2018 | MR

[11] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: differential geometry, Marcel Dekker Inc., New York, USA, 1973 | MR | Zbl

[12] K. Yano, S. Kobayashi, “Prolongation of tensor elds and connections to tangent bundles. I; II; III”, J. Math. Soc. Japan, 18 (1966), 194–210 ; 236–246 ; (1967), 486–488 | MR | Zbl | Zbl | Zbl