Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_2_a5, author = {N. G. Khisamiev and V. A. Roman'kov and S. D. Tynybekova}, title = {A criterion for effective complete decomposability of abelian groups}, journal = {Eurasian mathematical journal}, pages = {62--69}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a5/} }
TY - JOUR AU - N. G. Khisamiev AU - V. A. Roman'kov AU - S. D. Tynybekova TI - A criterion for effective complete decomposability of abelian groups JO - Eurasian mathematical journal PY - 2022 SP - 62 EP - 69 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a5/ LA - en ID - EMJ_2022_13_2_a5 ER -
N. G. Khisamiev; V. A. Roman'kov; S. D. Tynybekova. A criterion for effective complete decomposability of abelian groups. Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 62-69. http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a5/
[1] C. J. Ash, J. Knight, “Computable structures and the hyperarithmetical hierarchy”, Studies in Logic and the Foundations of Mathematics, 144, eds. P. Suppes, S. Abramsky, S. Artemov, D.M. Gabbay, R.A. Shore, A.S. Troestra, North-Holland Publishing Co., Amsterdam, 2000, 366 pp. | MR
[2] R. Baer, “Abelian groups without elements of finite order”, Duke Math. J., 3:1 (1937), 68–122 | DOI | MR
[3] Ye. Baisalov, A. Aljouiee, “Surjective quadratic Jordan algebras”, Eurasian Math. J., 11:2 (2020), 19–29 | DOI | MR
[4] Yu. L. Ershov, S. S. Goncharov, Constructive models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000 | MR | Zbl
[5] R. D. Downey, “On presentations of algebraic structures”, Complexity, logic, and recursion theory, Lecture Notes in Pure and Appl. Math., 187, ed. A. Sorbi, Dekker, New York, 1997, 157–205 | MR | Zbl
[6] R. G. Downey, S. S. Goncharov, A. M. Kach, J. F. Knight, O. V. Kudinov, A. G. Melnikov, D. Turetsky, “Decidability and computability of certain torsion-free abelian groups”, Notre Dame J. Form. Log., 51:1 (2010), 85–96 | DOI | MR | Zbl
[7] L. Fuchs, Infinite Abelian groups, v. 1, Academic Press, New York, 1970 | MR | Zbl
[8] J. Johnson, J. F. Knight, V. Ocasio, D. A. Tussupov, S. VanDenDriessche, “Preserving categoricity and complexity of relations”, Algebra and Logic, 54:2 (2015), 140–154 | DOI | MR | Zbl
[9] N. G. Khisamiev, “Strongly constructive abelian p-groups”, Algebra and Logic, 22:2 (1983), 142–158 | DOI | MR | Zbl
[10] N. G. Khisamiev, “Constructive abelian groups”, Studies in Logic and the Foundations of Mathematics, 139, eds. Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, V. W. Marek, Elsevier, Amsterdam, 1998, 1177–1231 | DOI | MR | Zbl
[11] N. G. Khisamiev, “On a class of strongly decomposable abelian groups”, Algebra and Logic, 41:4 (2002), 27–283 | DOI | MR
[12] N. G. Khisamiev, A. A. Krykpaeva, “Effiectively totally decomposable abelian groups”, Sib. Math. J., 38:6 (1997), 1227–1229 | DOI | MR | Zbl
[13] A. I. Mal'tsev, “On recursive Abelian groups”, Dokl. Akad. Nauk SSSR, 146:5 (1962), 1009–1012 (in Russian) | MR | Zbl
[14] A.G Melnikov, “Enumerations and completely decomposable torsion-free abelian groups”, Theory Comput. Syst., 45:4 (2009), 897–916 | DOI | MR | Zbl
[15] J. A. Tussupov, “Categoricity and complexity of relations over algebraic structures”, Algebra and Logic, 54:5 (2015), 408–414 | DOI | MR | Zbl
[16] J. A. Tussupov, “Isomorphisms and algorithmic properties of structures with two equivalences”, Algebra and Logic, 55:1 (2016), 50–57 | DOI | MR | Zbl