Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing complex-valued functions
Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the evolution of the scattering data of the Sturm-Liouville operator is derived by the method of the inverse scattering problem, the potential of which is a solution to the loaded general Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions.
@article{EMJ_2022_13_2_a3,
     author = {U. A. Hoitmetov},
     title = {Integration of the loaded general {Korteweg-de} {Vries} equation in tne class of rapidly decreasing complex-valued functions},
     journal = {Eurasian mathematical journal},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a3/}
}
TY  - JOUR
AU  - U. A. Hoitmetov
TI  - Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing complex-valued functions
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 43
EP  - 54
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a3/
LA  - en
ID  - EMJ_2022_13_2_a3
ER  - 
%0 Journal Article
%A U. A. Hoitmetov
%T Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing complex-valued functions
%J Eurasian mathematical journal
%D 2022
%P 43-54
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a3/
%G en
%F EMJ_2022_13_2_a3
U. A. Hoitmetov. Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing complex-valued functions. Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 43-54. http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a3/

[1] Yu. Yu. Bagderina, “Rational solutions of fifth-order evolutionary equations for describing waves on water”, J. Appl. Math. Mech., 72:2 (2008), 180–191 | DOI | MR | Zbl

[2] V. A. Blashchak, “An analog of the inverse problem in the theory of scattering for a non-selfconjugate operator I”, Diff. Equat., 4:8 (1988), 1519–1533 (in Russian) | MR

[3] V. A. Blashchak, “An analog of the inverse problem in the theory of scattering for a non-selfconjugate operator II”, Diff. Equat., 4:10 (1988), 1915–1924 (in Russian) | MR

[4] M. Daniel, K. Porsezian, M. Lakshmanan, “On the integrable models of the higher order water wave equation”, Physics Letters A, 174:3 (1993), 237–240 | DOI | MR

[5] L. D. Faddeev, “Properties of the S-matrix of the one-dimensional Schrödinger equation”, Tr. MIAN, 73, 1964, 314–336 (in Russian) | MR | Zbl

[6] C. S. Gardner, I. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR

[7] J. Gear, R. Grimshaw, “A second order theory for solitary waves in shallow fluids”, Phys. Fluids, 26:1 (1983), 14–29 | DOI | MR | Zbl

[8] N. L. Gol'dman, “Some new statements for nonlinear parabolic problems”, Eurasian Math. J., 12:1 (2021), 21–38 | DOI | MR | Zbl

[9] U. A. Hoitmetov, “Integration of the general KdV equation with a self-consistent source in the class of rapidly decreasing complex-valued functions”, Doklady AN RUz, 2007, no. 5, 16–20 (in Russian) | MR

[10] U. A. Hoitmetov, “Integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing complexvalued functions”, Uzbek Math. Jour., 2020, no. 4, 44–52 | MR | Zbl

[11] M. T. Jenaliyev, M. I. Ramazanov, M. G. Yergaliyev, “On an inverse problem for a parabolic equation in a degenerate angular domain”, Eurasian Math. J., 12:2 (2021), 25–38 | MR | Zbl

[12] T. Sh. Kalmenov, A. K. Les, U. A. Iskakova, “Determination of density of elliptic potential”, Eurasian Math. J., 12:4 (2021), 43–52 | DOI | MR | Zbl

[13] A. B. Khasanov, U. A. Hoitmetov, “Integration of the Korteweg-de Vries equation with a loaded term in the class of rapidly decreasing functions”, Doklady AN RUz, 1 (2021), 13–18 (in Russian) | MR

[14] A. B. Khasanov, U. A. Khoitmetov, “On integration of Korteweg-de Vries equation in a class of rapidly decreasing complex-valued functions”, Russian Mathematics, 62:3 (2018), 68–78 | DOI | MR | Zbl

[15] A. B. Khasanov, M. M. Matyakubov, “Integration of the nonlinear Korteweg-de Vries equation with an additional term”, Theoret. and Math. Phys., 203:2 (2020), 596–607 | DOI | MR | Zbl

[16] C. G. Koop, G. Butler, “An investigation of internal solitary waves in a two-fluid system”, J. Fluid Mech., 112:1 (1981), 225–251 | DOI | MR | Zbl

[17] S. A. Kordyukova, “The Korteweg de Vries hierarchy as an asymptotic limit of the Boussinesq system”, Teor. and Math. Phys., 154:2 (2008), 294–304 | DOI | MR | Zbl

[18] A. I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Comp. Math. and Math. Phys., 44:4 (2004), 657–675 | MR

[19] R. A. Kraenkel, M. A. Manna, J. G. Pereira, “The Korteweg-de Vries hierarchy and long water-waves”, J. Math. Phys., 36:1 (1995), 307–320 | DOI | MR | Zbl

[20] N. A. Kudryashov, M. B. Sukharev, “Exact solutions of a non-linear fifth-order equation for describing waves on water”, J. Appl. Maths. Mechs., 65:5 (2001), 855–865 | DOI | MR | Zbl

[21] N. A. Kudryashov, “A note on solutions of the Korteweg-de Vries hierarchy”, Commun. Nonlinear Sci. Numer. Simulat., 16:4 (2011), 1703–1705 | DOI | MR | Zbl

[22] S. S. Kumar, R. Sahadevan, “Integrability and exact solutions of deformed fifth-order Korteweg-de Vries equation”, Pramana-J. Phys., 94:1 (2020) | DOI | Zbl

[23] A. Kundu, R. Sahadevan, L. Nalinidevi, “Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability”, J. Phys. A: Math. Theor., 42:11 (2009), 115213 | DOI | MR | Zbl

[24] K. Lamb, L. Yan, “The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly nonlinear theory”, J. Phys. Ocean, 26:12 (1996), 2712–2734 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[25] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure and Appl. Math., 21:5 (1968), 467–490 | DOI | MR | Zbl

[26] C.-Y. Lee, R. C. Beardsley, “The generation of long nonlinear internal waves in a weakly stratified shear flow”, J. Geophys. Res., 79:3 (1974), 453–462 | DOI

[27] B. M. Levitan, Inverse Sturm-Liouville problems, Nauka, M., 1984 (in Russian) | MR | Zbl

[28] A. A. Lugovtsov, “Propagation of nonlinear waves in an inhomogeneous gas-liquid medium. Derivation of wave equations in the Korteweg-de Vries approximation”, J. Appl. Mech. Tech. Phy., 50:2 (2009), 327–335 | DOI | MR

[29] A. A. Lugovtsov, “Propagation of nonlinear waves in a gas-liquid medium. Exact and approximate analytical solutions of wave equations”, J. Appl. Mech. Tech. Phy., 51:1 (2010), 44–50 | DOI | MR | Zbl

[30] V. A. Marchenko, Sturm Liouville operators and their applications, Naukova Dumka, Kiev, 1977 (in Russian) | MR | Zbl

[31] A. M. Nakhushev, “Loaded equations and their applications”, Diff. Equat., 19:1 (1983), 86–94 (in Russian) | MR | Zbl

[32] A. M. Nakhushev, Equations of mathematical biology, Vishaya shkola, M., 1995 (in Russian)

[33] S. T.R. Rizvi, A. R. Seadawy, F. Ashraf, M. Younis, H. Iqbal, D. Baleanu, “Lump and interaction solutions of a geophysical Korteweg-de Vries equation”, Results in Phys., 19 (2020), 103661 | DOI | MR

[34] R. Schimming, “An explicit eExpression for the Korteweg-de Vries hierarchy”, Acta Applicandae Mathematicae, 39:1-3 (1995), 489–505 | DOI | MR | Zbl

[35] A. B. Yakhshimuratov, M. M. Matyakubov, “Integration of a loaded Korteweg-de Vries equation in a class of periodic functions”, Russian Math., 60:2 (2016), 72–76 | DOI | MR | Zbl

[36] L. Zhi, R. Sibgatullinn, “An improved theory of long waves on the water surface”, App. Math. Mech., 61:2 (1997), 177–182 | DOI | MR