Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_2_a0, author = {A. Abildayeva and A. Assanova and A. Imanchiyev}, title = {A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model}, journal = {Eurasian mathematical journal}, pages = {8--17}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a0/} }
TY - JOUR AU - A. Abildayeva AU - A. Assanova AU - A. Imanchiyev TI - A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model JO - Eurasian mathematical journal PY - 2022 SP - 8 EP - 17 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a0/ LA - en ID - EMJ_2022_13_2_a0 ER -
%0 Journal Article %A A. Abildayeva %A A. Assanova %A A. Imanchiyev %T A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model %J Eurasian mathematical journal %D 2022 %P 8-17 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a0/ %G en %F EMJ_2022_13_2_a0
A. Abildayeva; A. Assanova; A. Imanchiyev. A multi-point problem for a system of differential equations with piecewise-constant argument of generalized type as a neural network model. Eurasian mathematical journal, Tome 13 (2022) no. 2, pp. 8-17. http://geodesic.mathdoc.fr/item/EMJ_2022_13_2_a0/
[1] M. U. Akhmet, “Integral manifolds of differential equations with piecewise constant argument of generalized type”, Nonlinear Analysis, 66 (2007), 367–383 | DOI | MR | Zbl
[2] M. U. Akhmet, “On the reduction principle for differential equations with piecewise constant argument of generalized type”, J. Math. Anal. Appl., 336 (2007), 646–663 | DOI | MR | Zbl
[3] M. U. Akhmet, “Almost periodic solutions of differential equations with piecewise constant argument of generalized type”, Nonl. Anal.: Hybrid Systems and Appl., 2 (2008), 456–467 | MR | Zbl
[4] M. U. Akhmet, “Stability of differential equations with piecewise constant argument of generalized type”, Nonl. Anal.: Theory, Methods and Appl., 68 (2008), 794–803 | DOI | MR | Zbl
[5] M. U. Akhmet, Principles of discontinuous dynamical systems, Springer, New-York, 2010 | MR | Zbl
[6] M. U. Akhmet, Nonlinear hybrid continuous/discrete-time models, Atlantis Press, Paris, 2011 | MR | Zbl
[7] M. Akhmet, Almost periodicity, chaos, and asymptotic equivalence, Springer, New-York, 2020 | MR | Zbl
[8] M. Akhmet, M. Dauylbayev, A. Mirzakulova, “A singularly perturbed differential equation with piecewise constant argument of generalized type”, Turkish J. Math., 42 (2018), 1680–1685 | DOI | MR | Zbl
[9] M. Akhmet, M. O. Fen, “Replication of chaos in neural networks, economics and physics”, Nonlinear physical science, Springer, Higher Education Press, Beijing–Heidelberg, 2016 | DOI | MR
[10] M. Akhmet, A. Kashkynbayev, Bifurcation in autonomous and nonautonomous differential equations with discontinuities, Springer, Higher Education Press, Beijing–Heidelberg, 2017 | MR | Zbl
[11] M. U. Akhmet, E. Yilmaz, Neural networks with discontinuous/impact activations, Springer, New-York, 2013 | MR
[12] A. T. Assanova, “A boundary value problem for system of differential equations with piecewise-constant argument of generalized type”, 8th European Congress of Mathematics, Book of Abstracts (20-26 June 2021, Portoroz̆, Slovenia), 152–153 | MR
[13] A. T. Assanova, E. A. Bakirova, Z. M. Kadirbayeva, R. E. Uteshova, “A computational method for solving a problem with parameter for linear systems of integro-differential equations”, Comput. Appl. Math., 39 (2020), 248 | DOI | MR | Zbl
[14] A. T. Assanova, N. B. Iskakova, N. T. Orumbayeva, “On the well-posedness of periodic problems for the system of hyperbolic equations with finite time delay”, Math. Meth. Appl. Sci., 43 (2020), 881–902 | DOI | MR | Zbl
[15] A. T. Assanova, Z. M. Kadirbayeva, “On the numerical algorithms of parametrization method for solving a twopoint boundary-value problem for impulsive systems of loaded differential equations”, Comput. Appl. Math., 37 (2018), 4966–4976 | DOI | MR | Zbl
[16] A. T. Assanova, Z. M. Kadirbayeva, “Periodic problem for an impulsive system of the loaded hyperbolic equations”, Electr. J. differ. Equ, 2018:72 (2018), 1–8 | MR
[17] A. T. Assanova, Z. S. Tokmurzin, “A nonlocal multipoint problem for a system of fourth-order partial differential equations”, Eurasian Math. J., 11:3 (2020), 3–20 | DOI | MR | Zbl
[18] G. Bao, S. Wen, Z. Zeng, “Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type”, Neural Networks, 33 (2012), 32–41 | DOI | Zbl
[19] S. Busenberg, K. L. Cooke, “Models of vertically transmitted diseases with sequential-continuous dynamics”, Nonlinear Phenomena in Mathematical Sciences, ed. V. Lakshmikantham, Academic Press, NY, 1982, 179–187 | DOI | MR
[20] S. Busenberg, K. L. Cooke, “Vertically transmitted diseases”, Models and dynamics, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl
[21] S. Castillo, M. Pinto, R. Torres, “Asymptotic formulae for solutions to impulsive differential equations with piecewise constant argument of generalized type”, Electronic J. differ. Equ., 2019:40, 1–22 | MR | Zbl
[22] K. L. Cooke, J. Wiener, “Retarded differential equations with piecewise constant delays”, J. Math. Anal. Appl., 99 (1984), 265–297 | DOI | MR | Zbl
[23] O. Diekmann, S. A. van Gils, S. M.V. Lune, H. O. Walther, Delay equations, functional-, complex, -, nonlinear analysis, Springer-Verlag, New York, 1995 | MR | Zbl
[24] M. A. Dominguez-Perez, R. Rodriguez-Lopez, “Multipoint BVPs of Neumann type for functional differential equations”, Nonl. Anal.: Real World Appl., 13 (2012), 1662–1675 | DOI | MR | Zbl
[25] D. S. Dzhumabayev, “Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation”, U.S.S.R. Comput. Math. and Math. Phys., 29 (1989), 34–46 | DOI | MR
[26] D. S. Dzhumabaev, “On one approach to solve the linear boundary value problems for Fredholm integro-differential equations”, J. Comput. Appl. Math., 294 (2016), 342–357 | DOI | MR | Zbl
[27] D. S. Dzhumabaev, “New general solutions to linear Fredholm integro-differential equations and their applications on solving the BVPs”, J. Comput. Appl. Math., 327 (2018), 79–108 | DOI | MR | Zbl
[28] D. S. Dzhumabaev, “Computational methods of solving the BVPs for the loaded differential and Fredholm integrodifferential equations”, Math. Meth. Appl. Sci., 41 (2018), 1439–1462 | DOI | MR | Zbl
[29] D. S. Dzhumabaev, “Well-posedness of nonlocal boundary-value problem for a system of loaded hyperbolic equations and an algorithm for finding its solution”, J. Math. Anal. Appl, 461 (2018), 817–836 | DOI | MR | Zbl
[30] D. S. Dzhumabaev, “New general solutions of ordinary differential equations and the methods for the solution of boundary value problems”, Ukranian Math. J, 71 (2019), 1006–1031 | DOI | MR | Zbl
[31] D. S. Dzhumabaev, E. A. Bakirova, S. T. Mynbayeva, “A method of solving a nonlinear boundary value problem with a parameter for a loaded differential equation”, Math. Meth. Appl. Sci., 43 (2020), 1788–1802 | DOI | MR | Zbl
[32] D. S. Dzhumabaev, S. T. Mynbayeva, “New general solution to a nonlinear Fredholm integro-differential equation”, Eurasian Math. J., 10:4 (2019), 24–33 | DOI | MR | Zbl
[33] I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Univ. Press, New York, 1991 | MR | Zbl
[34] J. Hale, S. M.V. Lune, Introduction to functional differential equations, Springer-Verlag, New York, 1993 | MR | Zbl
[35] J. J. Nieto, R. Rodriguez-Lopez, “Monotone method for first-order functional differential equations”, Computers Math. with Appl., 52 (2006), 471–484 | DOI | MR | Zbl
[36] N. T. Orumbayeva, A. T. Assanova, A. B. Keldibekova, “On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation”, Eurasian Math. J., 13:1 (2022), 69–85 | DOI | MR | Zbl
[37] R. Rodriguez-Lopez, “Nonlocal BVPs for second-order functional differential equations”, Nonl. Anal., 74 (2011), 7226–7239 | DOI | MR | Zbl
[38] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, Singapore, 1995 | MR | Zbl
[39] S. M. Shah, J. Wiener, “Advanced differential equations with piecewise constant argument deviations”, Intern. J. Math. and Math. Sciences, 6 (1983), 671–703 | DOI | MR | Zbl
[40] J. Wiener, Generalized solutions of functional differential equations, World Scientific, Singapore, 1993 | MR | Zbl