Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_1_a4, author = {I. V. Latkin}, title = {The recognition complexity of decidable theories}, journal = {Eurasian mathematical journal}, pages = {44--68}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a4/} }
I. V. Latkin. The recognition complexity of decidable theories. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 44-68. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a4/
[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Publishing Company, Reading, Massachusetts, 1976
[2] S. Arora, B. Barak, Computational complexity: a modern approach, Cambridge University Press, 2009
[3] G. Baumslag, D. Gildenhuys, R. Strebel, “Algorithmically insoluble problems about finitely presented solvable groups, Lie and associative algebras I”, J. Pure and Applied Algebra, 39:1-2 (1986), 53–94
[4] K. J. Compton, C. W. Henson, “A uniform method for proving lower bounds on the computational complexity of logical theories”, Ann. Pure Appl. Logic, 48:1 (1990), 1–79
[5] S. A. Cook, “The complexity of theorem-proving procedures”, Proc. of the 3$^{rd}$ Annual ACM Symposium on the Theory of Computing (Shaker Heights, Ohio, 1971), 151–159
[6] Y. L. Ershov, I. A. Lavrov, A. D. Taimanov, M. A. Taitslin, “Elementary theories”, Russian Math. Surveys, 20 (1965), 35–100 (English translation)
[7] M. J. Fisher, M. O. Rabin, “Super exponential complexity of Presburger's arithmetic”, AMS Proceedings, 7, SIAM, 1974, 27–41
[8] K. Fleischmann, B. Mahr, D. Siefkes, “Bounded concatenation theory as a uniform method for proving lower complexity bounds”, Logic Colloquium, 76, eds. R. Gandy, M. Hyland, North-Holland, Amsterdam, 1977, 471–490
[9] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, Freeman, New York, 1979
[10] B. Sh. Kulpeshov, S. V. Sudoplatov, “Distributions of countable models of quite o-minimal Ehrenfeucht theories”, Eurasian Math. J., 11:3 (2020), 66–78
[11] I. V. Latkin, “The occurrence problem for subvarieties of the variety N$_2$A, revisited”, Algebra and Logic, 40:5 (2001), 327–333
[12] A. I. Malcev, Algorithms and recursive functions, Wolters-Noordhoff Pub. Co., 1970
[13] N. D. Markhabatov, S. V. Sudoplatov, “Ranks for families of all theories of given languages”, Eurasian Math. J., 12:2 (2021), 52–58
[14] A. R. Meyer, Weak monadic second order theory of successor is not elementary-recursive, Technical Report (Memo 38), Massachusetts Institute of Technology, Cambridge, MA, USA, 1973
[15] A. R. Meyer, “The inherent complexity of the theories of ordered sets”, International Congress of Mathematians (Vancouver, 1974); Canadian Math. Congress, 1975, 477–482
[16] A. R. Meyer, L. J. Stockmeyer, “The equivalence problem for regular expressions with squaring requires exponetial space”, Proc. Thirteenth Annual IEEE Symposium on Switching and Automata theory, 1972, 125–129
[17] M. O. Rabin, “Decidable theories”, Handbook of mathematical logic, Part C, Chapter 3, eds. J. Barwise, Elsevier, Amsterdam–New York; Eighth impression, 1999, 596–629
[18] E. L. Robertson, Structure of complexity in the weakmonadic second-order theories of the natural numbers, Research Report CS-73-31, Dept. of Applied Analysis and Computer Science, University of Waterloo, Dec. 1973; Proc. 6th ACM Symp. on Theory of Computing, 1974, 161–171
[19] L. J. Stockmeyer, The complexity of decision problems in automata theory and logic, PhD thesis, MIT Lab for Computer Science, 1974; /MIT/LCS TechRep 133
[20] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”, Proc. 5th Ann. ACM Symp. on the Theory of Computing, Association for Computing Machinery, New York, 1973, 1–9
[21] S. Vorobyov, “The most nonelementary theory”, Information and Computation, 190:2 (2004), 196–219