Zeros of lacunary type polynomials
Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 32-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial $$ f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n $$ with real or complex coefficients lie in the closed disc $$ |z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M', $$ where $$ M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|. $$ In this paper, we present new results on the location of zeros of the lacunary type polynomial $$ p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p$$ In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our results give better bounds for the location of polynomial zeros than the known ones.
@article{EMJ_2022_13_1_a3,
     author = {S. Das},
     title = {Zeros of lacunary type polynomials},
     journal = {Eurasian mathematical journal},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/}
}
TY  - JOUR
AU  - S. Das
TI  - Zeros of lacunary type polynomials
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 32
EP  - 43
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/
LA  - en
ID  - EMJ_2022_13_1_a3
ER  - 
%0 Journal Article
%A S. Das
%T Zeros of lacunary type polynomials
%J Eurasian mathematical journal
%D 2022
%P 32-43
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/
%G en
%F EMJ_2022_13_1_a3
S. Das. Zeros of lacunary type polynomials. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/