Zeros of lacunary type polynomials
Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial $$ f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n $$ with real or complex coefficients lie in the closed disc $$ |z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M', $$ where $$ M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|. $$ In this paper, we present new results on the location of zeros of the lacunary type polynomial $$ p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p$$ In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our results give better bounds for the location of polynomial zeros than the known ones.
@article{EMJ_2022_13_1_a3,
     author = {S. Das},
     title = {Zeros of lacunary type polynomials},
     journal = {Eurasian mathematical journal},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/}
}
TY  - JOUR
AU  - S. Das
TI  - Zeros of lacunary type polynomials
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 32
EP  - 43
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/
LA  - en
ID  - EMJ_2022_13_1_a3
ER  - 
%0 Journal Article
%A S. Das
%T Zeros of lacunary type polynomials
%J Eurasian mathematical journal
%D 2022
%P 32-43
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/
%G en
%F EMJ_2022_13_1_a3
S. Das. Zeros of lacunary type polynomials. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/

[1] A. Aziz, Studies in zeros and extremal properties of polynomials, PhD thesis, Kashmir University, India, 1981

[2] S. D. Bairagi, V. K. Jain, T. K. Mishra, L. Saha, “On the location of the zeros of certain polynomials”, Publications de L'institut Mathematique Nouvelle serie, 99:113 (2016), 287–294

[3] P. Batra, M. Mignotte, D. Stefanescu, “Improvements of Lagrange's bound for polynomial roots”, Journal of Symbolic Computation, 82 (2017), 19–25

[4] F. G. Boese, W. J. Luther, “A note on a classical bound for the moduli of all zeros of a polynomial”, IEEE Trans. Automat. Contr., 34:9 (1989), 998–1001

[5] A. L. Cauchy, Exercise de mathematique, IV Annee de Bure Freres, Paris, 1829

[6] B. Datt, N. K. Govil, “On the location of the zeros of a polynomial”, J. Approx. Theory, 24 (1978), 78–82

[7] M. Dehmer, “On the location of zeros of complex polynomials”, J. Ineq. Pure and Appl. Math., 7:1 (2006), 1–13

[8] N. K. Govil, Q. I. Rahman, G. Schmeisser, “On the derivative of a polynomial”, Illinois J. Math., 23:2 (1979), 319–329

[9] H. Guggenheimer, “On a note by Q. G. Mohammad”, Amer. Math. Monthly, 71 (1964), 54–55

[10] V. K. Jain, “On Cauchy's type bounds for zeros of a polynomial”, Univeritatis Mariae Curie Sklodowska, Lublin, Polonia, XLIX:8 (1995), 109–116

[11] V. K. Jain, “On the location of zeros of a polynomial”, Bull. Math. Soc. Sci. Math. Roumanie, 102:4 (2011), 337–352

[12] V. K. Jain, V. Tewary, “A refinement of Cauchy's bound for the moduli of zeros of a polynomial”, Bull. Math. Soc. Sci. Math. Roumanie, 109:2 (2018), 173–185

[13] T. Kojima, “On a theorem of Hadamard and its application”, Tohoku Math. J., 5 (1914), 54–60

[14] J. L. Lagrange, “Sur la résolution des equations numériques”, Mémoires de l'Académie royale des Sciences et Belleslettres de Berlin, XXIII (1769), 539–578

[15] M. Marden, Geometry of polynomials, Math. Surveys, 3, Amer. Math Soc., New York, 1966

[16] Q. G. Mohammad, “On the zeros of polynomials”, Amer. Math. Monthly, 72:6 (1965), 631–633

[17] W. M. Shah, A. Liman, “Bounds for the zeros of polynomials”, Analysis in theory and applications, 20:1 (2004), 16–27

[18] E. C. Titchmarsh, The theory of functions, 2nd edition, Oxford Univ. Press, London, 1939

[19] J. L. Walsh, “An inequality for the roots of an algebraic equation”, Annals of Mathematics Second Series, 25:3 (1924), 285–286

[20] B. A. Zargar, “Zeros of lacunary type of polynomials”, Math. J. Interdisciplinary Sci., 5:2 (2017), 93–99