Zeros of lacunary type polynomials
Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 32-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial
$$
f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n
$$
with real or complex coefficients lie in the closed disc
$$
|z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M',
$$
where
$$
M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|.
$$
In this paper, we present new results on the location of zeros of the lacunary type polynomial
$$
p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p$$
In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above
result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our
results give better bounds for the location of polynomial zeros than the known ones.
@article{EMJ_2022_13_1_a3,
author = {S. Das},
title = {Zeros of lacunary type polynomials},
journal = {Eurasian mathematical journal},
pages = {32--43},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/}
}
S. Das. Zeros of lacunary type polynomials. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a3/