Determination of fractional order and source term in subdiffusion equations
Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 19-31

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the inverse problem for simultaneously determining the order of the Riemann-Liouville time fractional derivative and the source function in subdiffusion equations. The classical Fourier method is used to prove uniqueness and existence theorems for this inverse problem.
@article{EMJ_2022_13_1_a2,
     author = {R. R. Ashurov and Yu. E. Fayziev},
     title = {Determination of fractional order and source term in subdiffusion equations},
     journal = {Eurasian mathematical journal},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - Yu. E. Fayziev
TI  - Determination of fractional order and source term in subdiffusion equations
JO  - Eurasian mathematical journal
PY  - 2022
SP  - 19
EP  - 31
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/
LA  - en
ID  - EMJ_2022_13_1_a2
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A Yu. E. Fayziev
%T Determination of fractional order and source term in subdiffusion equations
%J Eurasian mathematical journal
%D 2022
%P 19-31
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/
%G en
%F EMJ_2022_13_1_a2
R. R. Ashurov; Yu. E. Fayziev. Determination of fractional order and source term in subdiffusion equations. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/