Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2022_13_1_a2, author = {R. R. Ashurov and Yu. E. Fayziev}, title = {Determination of fractional order and source term in subdiffusion equations}, journal = {Eurasian mathematical journal}, pages = {19--31}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/} }
TY - JOUR AU - R. R. Ashurov AU - Yu. E. Fayziev TI - Determination of fractional order and source term in subdiffusion equations JO - Eurasian mathematical journal PY - 2022 SP - 19 EP - 31 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/ LA - en ID - EMJ_2022_13_1_a2 ER -
R. R. Ashurov; Yu. E. Fayziev. Determination of fractional order and source term in subdiffusion equations. Eurasian mathematical journal, Tome 13 (2022) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/EMJ_2022_13_1_a2/
[1] Sh. A. Alimov, R. R. Ashurov, “Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation”, J. Inverse Ill-posed Probl., 28:5 (2020), 651–658
[2] R. R. Ashurov, O. Muhiddinova, “Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator”, Lobachevskii Journal of Mathematics, 42:3 (2021), 517–525
[3] R. R. Ashurov, S. Umarov, “Determination of the order of fractional derivative for subdiffusion equations”, Fractional Calculus and Applied analysis, 23:6 (2020), 1647–1662
[4] R. R. Ashurov, R. Zunnunov, “Initial-boundary value and inverse problems for subdiffusion equation in $R^N$”, Fractional differential Calculus, 10:2 (2020), 291–306
[5] R. Ashurov, Yu. Fayziev, “Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation”, Lobachevskii journal of mathematics, 42:3 (2021), 508–516
[6] R. Ashurov, Yu. Fayziev, “Inverse problem for determining the order of the fractional derivative in the wave equation”, Mathematical Notes, 110:6 (2021), 32–42
[7] R. Ashurov, Yu. Fayziev, “On construction of solutions of linear fractional differentional equations with constant coefficients and the fractional derivatives”, Uzb. Math. J., 3 (2017), 3–21 (in Russian)
[8] N. A. Asl, D. Rostamy, “Identifying an unknown time-dependent boundary source ib time-fractional diffusion equation with a non-local boundary condition”, Journal of Computational and Applied Mathematics, 335 (2019), 36–50
[9] H. Bateman, Higher transcendental functions, McGraw-Hill, 1953
[10] M. D'Ovidio, P. Loreti, A. Momenzadeh, S. Ahrabi, “Determination of order in linear fractional differential equations”, Fract. Calc. Appl. Anal., 21:4 (2018), 937–948
[11] K. M. Furati, O. S. Iyiola, M. Kirane, “An inverse problem for a generalized fractional diffusion”, Applied Mathematics and Computation, 249 (2014), 24–31
[12] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogozin, Mittag-Leffler functions, related topics and applications, Springer, 2014
[13] V. A. Il'in, “On the solvability of mixed problems for hyperbolic and parabolic equations”, Russian Math. Surveys, 15:1 (1960), 85–142
[14] J. Janno, “Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time-fractional diffusion equation”, Electronic J. differential Equations, 216 (2016), 1–28
[15] Y. Kian, Z. Li, Y. Liu, M. Yamamoto, “The uniqueness of inverse problems for a fractional equation with a single measurement”, Math. Ann., 380:3-4 (2021), 1465–1495
[16] M. Kirane, A. S. Malik, “Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time”, Applied Mathematics and Computation, 218 (2011), 163–170
[17] M. Kirane, B. Samet, B. T. Torebek, “Determination of an unknown source term and the temperature distribution for the subdiffusion equation at the initial and final data”, Electronic Journal of differential Equations, 217 (2017), 1–13
[18] M. A. Krasnoselskii, P. P. Zabreyko, E. I. Pustilnik, P. S. Sobolevskii, Integral operators in the spaces of integrable functions, Nauka, M., 1966 (in Russian)
[19] O. A. Ladyzhenskaya, Mixed problem for a hyperbolic equation, Gostekhizdat, 1953
[20] Z. Li, Y. Liu, M. Yamamoto, “Initial-boundary value problem for multi-term time-fractional diffusion equation with positive constant coefficients”, Applied Mathematica and Computation, 257 (2015), 381–397
[21] Z. Li, Y. Liu, M. Yamamoto, “Inverse problems of determining parameters of the fractional partial differential equations”, Handbook of fractional calculus with applications, v. 2, DeGruyter, 2019, 431–442
[22] Z. Li, Zh. Zhang, “Unique determination of fractional order and source term in a fractional diffusion equation from sparse boundary data”, Inverse Problems, 36:11 (2020) | DOI
[23] Y. Liu, Z. Li, M. Yamamoto, “Inverse problems of determining sources of the fractional partial differential equations”, Handbook of fractional calculus with applications, v. 2, DeGruyter, 2019, 411–430
[24] A. V. Pskhu, Fractional partial differential equations, Nauka, M., 2005 (in Russian)
[25] W. Rundell, Z. Zhang, “Recovering an unknown source in a fractional diffusion problem”, Journal of Computational Physics, 368 (2018), 299–314
[26] M. Ruzhansky, N. Tokmagambetov, B. T. Torebek, “Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations”, J. Inverse Ill-possed Probl., 27 (2019), 891–911
[27] L. Sun, Y. Zhang, T. Wei, “Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation”, Applied Numerical Mathematics, 135 (2019), 228–245
[28] Y. Zhang, X. Xu, “Inverse scource problem for a fractional differential equations”, Inverse Prob., 27:3 (2011), 31–42