Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_4_a6, author = {Ya. V. Zabolotnii and I. V. Denega}, title = {An extremal problem on non-overlapping domains containing ellipse points}, journal = {Eurasian mathematical journal}, pages = {82--91}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/} }
TY - JOUR AU - Ya. V. Zabolotnii AU - I. V. Denega TI - An extremal problem on non-overlapping domains containing ellipse points JO - Eurasian mathematical journal PY - 2021 SP - 82 EP - 91 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/ LA - en ID - EMJ_2021_12_4_a6 ER -
Ya. V. Zabolotnii; I. V. Denega. An extremal problem on non-overlapping domains containing ellipse points. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 82-91. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/
[1] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, “Topological-algebraic structures and geometric methods in complex analysis”, Zb. prats of the Inst. of Math. of NASU, 2008 (in Russian)
[2] A. Bakhtin, “Extremal decomposition of the complex plane with restrictions for free poles”, J. Math. Sci., 231:1 (2018), 1–15
[3] A. Bakhtin, “Separating transformation and extremal problems on nonoverlapping simply connected domains”, J. Math. Sci., 234:1 (2018), 1–13
[4] G. P. Bakhtina, Variational methods and quadratic differentials in problems of non-overlapping domains, PhD diss., Institute of Mathematics, Kiev, 1975 (in Russian)
[5] I. V. Denega, Ya. V. Zabolotnii, “Estimates of products of inner radii of non-overlapping domains in the complex plane”, Complex Variables and Elliptic Equations, 62:11 (2017), 1611–1618
[6] I. Denega, Ya. Zabolotnii, “Problem on extremal decomposition of the complex plane”, An. St. Univ. Ovidius Constanta, 27:1 (2019), 61–77
[7] V. N. Dubinin, “The product of internal radii of “partially nonoverlapping” domains”, Questions in the metric theory of mappings and its application, Proc. Fifth Colloq. Quasiconformal Mappings, Generalizations Appl. (Donetsk, 1976), “Naukova Dumka”, Kiev, 1978, 24–31
[8] V. N. Dubinin, “Symmetrization method in geometric function theory of complex variables”, Russian Math. Surveys, 1 (1994), 1–79
[9] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhäuser/Springer, Basel, 2014
[10] G. M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc., Providence, R.I., 1969
[11] J. A. Jenkins, Univalent functions and conformal mapping, Publishing House of Foreign Literature, M., 1962 (in Russian)
[12] L. I. Kolbina, “Conformal mapping of the unit circle onto non-overlapping domains”, Bulletin of Leningrad University, 5 (1955), 37–43 (in Russian)
[13] E. V. Kostyuchenko, “The solution of one problem of extremal decomposition”, Dal'nevost. Mat. Zh., 2:1 (2001), 3–15
[14] L. V. Kovalev, “On three disjoint domains”, Dal'nevost. Mat. Zh., 1:1 (2000), 3–7
[15] G. V. Kuz'mina, “Problems of extremal decomposition of the Riemann sphere”, Zap. Nauchn. Sem. POMI, 276, 2001, 253–275 (in Russian)
[16] M. A. Lavrent'ev, “On the theory of conformal mappings”, Travaux Inst. Physico-Math. Stekloff, 5, Acad. Sci. USSR, L., 1934, 159–245 (in Russian)
[17] N. A. Lebedev, The area principle in the theory of univalent functions, Science, M., 1975 (in Russian)
[18] G. Polya, G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, Princeton, 1951
[19] P. M. Tamrazov, “Extremal conformal mappings and poles of quadratic differentials”, Izv. Akad. Nauk SSSR, Ser. Mat., 32:5 (1968), 1033–1043
[20] Ya. Zabolotnii, I. Denega, “On conformal radii of non-overlapping simply connected domains”, International Journal of Advanced Research in Mathematics, 11:11 (2018), 1–7