An extremal problem on non-overlapping domains containing ellipse points
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 82-91

Voir la notice de l'article provenant de la source Math-Net.Ru

An extremal problem of geometric function theory of a complex variable for the maximum of products of the inner radii on a system of $n$ mutually non-overlapping multiply connected domains $B_k$ containing the points $a_k$, $k=\overline{1,n}$, located on an arbitrary ellipse $\frac{x^2}{d^2}+\frac{y^2}{t^2}=1$ for which $d^2-t^2=1$, is solved.
@article{EMJ_2021_12_4_a6,
     author = {Ya. V. Zabolotnii and I. V. Denega},
     title = {An extremal problem on non-overlapping domains containing ellipse points},
     journal = {Eurasian mathematical journal},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/}
}
TY  - JOUR
AU  - Ya. V. Zabolotnii
AU  - I. V. Denega
TI  - An extremal problem on non-overlapping domains containing ellipse points
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 82
EP  - 91
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/
LA  - en
ID  - EMJ_2021_12_4_a6
ER  - 
%0 Journal Article
%A Ya. V. Zabolotnii
%A I. V. Denega
%T An extremal problem on non-overlapping domains containing ellipse points
%J Eurasian mathematical journal
%D 2021
%P 82-91
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/
%G en
%F EMJ_2021_12_4_a6
Ya. V. Zabolotnii; I. V. Denega. An extremal problem on non-overlapping domains containing ellipse points. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 82-91. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a6/