Ideal Connes-amenability of Lau product of Banach algebras
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 74-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{A}$ and $\mathcal{B}$ be Banach algebras and $\theta$ be a non-zero character on $\mathcal{B}$. In the current paper, we study the ideal Connes-amenability of the algebra $\mathcal{A}\times_\theta\mathcal{B}$ so-called the $\tau$-Lau product algebra. We also prove that if $\mathcal{A}\times_\theta\mathcal{B}$ is ideally Connes-amenable, then both $\mathcal{A}$ and $\mathcal{B}$ are ideally Connes-amenable. As a result, we show that $l^1(S)\times_\theta l^1(S)$ is ideally Connes-amenable, where $S$ is a Rees matrix semigroup.
@article{EMJ_2021_12_4_a5,
     author = {A. Minapoor and A. Bodaghi and O. T. Mewomo},
     title = {Ideal {Connes-amenability} of {Lau} product of {Banach} algebras},
     journal = {Eurasian mathematical journal},
     pages = {74--81},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a5/}
}
TY  - JOUR
AU  - A. Minapoor
AU  - A. Bodaghi
AU  - O. T. Mewomo
TI  - Ideal Connes-amenability of Lau product of Banach algebras
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 74
EP  - 81
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a5/
LA  - en
ID  - EMJ_2021_12_4_a5
ER  - 
%0 Journal Article
%A A. Minapoor
%A A. Bodaghi
%A O. T. Mewomo
%T Ideal Connes-amenability of Lau product of Banach algebras
%J Eurasian mathematical journal
%D 2021
%P 74-81
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a5/
%G en
%F EMJ_2021_12_4_a5
A. Minapoor; A. Bodaghi; O. T. Mewomo. Ideal Connes-amenability of Lau product of Banach algebras. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 74-81. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a5/