Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_4_a4, author = {B. N. Khabibullin}, title = {Poisson--Jensen formulas and balayage of measures}, journal = {Eurasian mathematical journal}, pages = {53--73}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/} }
B. N. Khabibullin. Poisson--Jensen formulas and balayage of measures. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 53-73. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/
[1] S. L. Anderson, “Green's Function, Jensen measures, and bounded point evaluations”, J. Func. Analysis, 43 (1981), 360–367
[2] D. H. Armitage, S. J. Gardiner, Classical potential theory, Springer Monogr. Math., Springer-Verlag, London, 2001
[3] M. G. Arsove, “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365
[4] M. G. Arsove, “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551
[5] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Second edition, Springer-Verlag, New York, 2001
[6] Th. Bagby, P. M. Guathier, “Harmonic approximation on closed subsets of Riemannian manifolds”, Complex Potential Theory, Kluwer Academic Publisher, Netherlands, 1994, 75–87
[7] St. Petersburg Math. J., 28:2 (2017), 127–151
[8] J. Bliedner, W. Hansen, Potential theory. An analytic and probabilistic approach to balayage, Springer-Verlag, Berlin, 1986
[9] N. Bourbaki, Éléments de mathématique. Livre VI. Intégration, Hermann, Paris, 1969 (in French)
[10] S. Bu, W. Schachermayer, “Approximation of Jensen measures by image measures under holomorphic functions and applications”, Trans. Amer. Math. Soc., 331:2 (1992), 585–608
[11] Proc. Steklov Inst. Math., 301 (2018), 272–303
[12] B. J. Cole, Th. Ransford, “Subharmonicity without upper semicontinuity”, J. Funct. Anal., 147 (1997), 420–442
[13] B. J. Cole, Th. Ransford, “Jensen measures, harmonic measures”, J. reine angew. Math., 541 (2001), 29–53
[14] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren Math. Wiss., Springer-Verlag, New York, 1984
[15] T. W. Gamelin, Uniform algebras and Jensen measures, Cambridge Univ. Press, Cambridge, 1978
[16] S. J. Gardiner, Harmonic approximation, Cambridge Univ. Press, Cambridge, 1995
[17] P. M. Gauthier, “Uniform approximation”, Complex Potential Theory, Kluwer Academic Publisher, Netherlands, 1994, 235–271
[18] P. M. Gauthier, “Subharmonic extensions and approximations”, Can. Math. Bull., 37:5 (1994), 46–53
[19] M. Ghergu, M. Manolaki, I. Netuka, H. Render, “Potential theory and approximation: highlights from the scientific work of Stephen Gardiner”, Analysis and Mathematical Physics, 9:2 (2019), 679–709
[20] W. Hansen, I. Netuka, “Jensen measures in potential theory”, Potential Analysis, 37:1 (2011), 79–90
[21] W. Hansen, I. Netuka, “Reduced functions and Jensen measures”, Proc. Amer. Math. Soc., 146:1 (2018), 153–160
[22] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. 1, Acad. Press, London, 1976
[23] L. L. Helms, Introduction to potential theory, Wiley Interscience, New York–London–Sydney–Toronto, 1969
[24] Math. USSR-Izv., 39:2 (1992), 1063–1084
[25] Siberian Math. J., 33:1 (1992), 144–148
[26] Siberian Math. J., 33:3 (1992), 519–524
[27] Russian Acad. Sci. Izv. Math., 42:1 (1994), 115–131
[28] Russian Acad. Sci. Izv. Math., 42:3 (1994), 479–500
[29] Russian Acad. Sci. Izv. Math., 45:1 (1995), 125–149
[30] Math. Notes, 59:4 (1996), 440–444
[31] B. N. Khabibullin, “Dual approach to certain questions for weighted spaces of holomorphic functions”, Israel Math. Conf. Proc. (Tel-Aviv, December 14-19, 1997), Entire functions in modern analysis, 15, Bar-Ilan Univ., Ramat Gan, 2001, 207–219
[32] B. N. Khabibullin, “Completeness of sets of complex exponentials in convex sets: open problems”, Proceedings of the NATO Advanced Study Institute on Twentieth Century Harmonic Analysis — A Celebration (Il Ciocco, Italy, July 2-15, 2000), NATO Sci. Ser. II, Math. Phys. Chem., 33, ed. James S. Byrnes, Kluwer Acad. Publ., Dordrecht, Netherlands, 2001, 371–373
[33] Funct. Anal. Appl., 35:3 (2001), 237–239
[34] Izv. Math., 65:5 (2001), 1017–1039
[35] Siberian Math. J., 44:4 (2003), 713–728
[36] Sb. Math., 198:2 (2007), 261–298
[37] B. N. Khabibullin, Completeness of systems of exponentials and sets of uniqueness, 4th ed., revised and enlarged, Bashkir State University Press, Ufa, 2012 (in Russian)
[38] Funct. Anal. Appl., 53:2 (2019), 110–123
[39] St. Petersburg Math. J., 20:1 (2009), 101–162
[40] Funct. Anal. Appl., 52:1 (2018), 21–34
[41] B. N. Khabibullin, A. P. Rozit, E. B. Khabibullina, “Order versions of the Hahn Banach theorem and envelopes. II. Applications to the function theory”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, M., 2019, 93–135 (in Russian)
[42] St. Petersburg Math. J., 26:2 (2015), 319–340
[43] P. Koosis, The logarithmic integral, v. II, Cambridge Univ. Press, Cambridge, 1992
[44] P. Koosis, Leçons sur le théorème Beurling et Malliavin, Les Publications CRM, Montréal, 1996 (in French)
[45] Sb. Math., 200:9 (2009), 1353–1382
[46] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972
[47] V. Matsaev, I. Ostrovskii, M. Sodin, “Variations on the theme of Marcinkiewicz' inequality”, J. Anal. Math., 86:1 (2002), 289–317
[48] Funct. Anal. Appl., 53:1 (2019), 65–68
[49] P. A. Meyer, Probability and potentials, Blaisdell Publ. Co., Waltham, Mass.–Toronto–London, 1966
[50] Th. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995
[51] Th. J. Ransford, “Jensen measures”, Approximation, complex analysis and potential theory (Montréal, QC), Kluwer, Dordrecht, 2001, 221–237
[52] D. Sarason, “Representing measures for $R(X)$ and their Green's functions”, J. Func. Anal., 7 (1971), 359–385