Poisson--Jensen formulas and balayage of measures
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 53-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Our main results are certain developments of the classical Poisson–Jensen formula for subharmonic functions. The basis of the classical Poisson–Jensen formula is the natural duality between harmonic measures and Green's functions. Our generalizations use some duality between the balayage of measures and their potentials.
@article{EMJ_2021_12_4_a4,
     author = {B. N. Khabibullin},
     title = {Poisson--Jensen formulas and balayage of measures},
     journal = {Eurasian mathematical journal},
     pages = {53--73},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Poisson--Jensen formulas and balayage of measures
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 53
EP  - 73
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/
LA  - en
ID  - EMJ_2021_12_4_a4
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Poisson--Jensen formulas and balayage of measures
%J Eurasian mathematical journal
%D 2021
%P 53-73
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/
%G en
%F EMJ_2021_12_4_a4
B. N. Khabibullin. Poisson--Jensen formulas and balayage of measures. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 53-73. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/