Poisson--Jensen formulas and balayage of measures
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 53-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our main results are certain developments of the classical Poisson–Jensen formula for subharmonic functions. The basis of the classical Poisson–Jensen formula is the natural duality between harmonic measures and Green's functions. Our generalizations use some duality between the balayage of measures and their potentials.
@article{EMJ_2021_12_4_a4,
     author = {B. N. Khabibullin},
     title = {Poisson--Jensen formulas and balayage of measures},
     journal = {Eurasian mathematical journal},
     pages = {53--73},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Poisson--Jensen formulas and balayage of measures
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 53
EP  - 73
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/
LA  - en
ID  - EMJ_2021_12_4_a4
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Poisson--Jensen formulas and balayage of measures
%J Eurasian mathematical journal
%D 2021
%P 53-73
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/
%G en
%F EMJ_2021_12_4_a4
B. N. Khabibullin. Poisson--Jensen formulas and balayage of measures. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 53-73. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a4/

[1] S. L. Anderson, “Green's Function, Jensen measures, and bounded point evaluations”, J. Func. Analysis, 43 (1981), 360–367

[2] D. H. Armitage, S. J. Gardiner, Classical potential theory, Springer Monogr. Math., Springer-Verlag, London, 2001

[3] M. G. Arsove, “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365

[4] M. G. Arsove, “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551

[5] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Second edition, Springer-Verlag, New York, 2001

[6] Th. Bagby, P. M. Guathier, “Harmonic approximation on closed subsets of Riemannian manifolds”, Complex Potential Theory, Kluwer Academic Publisher, Netherlands, 1994, 75–87

[7] St. Petersburg Math. J., 28:2 (2017), 127–151

[8] J. Bliedner, W. Hansen, Potential theory. An analytic and probabilistic approach to balayage, Springer-Verlag, Berlin, 1986

[9] N. Bourbaki, Éléments de mathématique. Livre VI. Intégration, Hermann, Paris, 1969 (in French)

[10] S. Bu, W. Schachermayer, “Approximation of Jensen measures by image measures under holomorphic functions and applications”, Trans. Amer. Math. Soc., 331:2 (1992), 585–608

[11] Proc. Steklov Inst. Math., 301 (2018), 272–303

[12] B. J. Cole, Th. Ransford, “Subharmonicity without upper semicontinuity”, J. Funct. Anal., 147 (1997), 420–442

[13] B. J. Cole, Th. Ransford, “Jensen measures, harmonic measures”, J. reine angew. Math., 541 (2001), 29–53

[14] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren Math. Wiss., Springer-Verlag, New York, 1984

[15] T. W. Gamelin, Uniform algebras and Jensen measures, Cambridge Univ. Press, Cambridge, 1978

[16] S. J. Gardiner, Harmonic approximation, Cambridge Univ. Press, Cambridge, 1995

[17] P. M. Gauthier, “Uniform approximation”, Complex Potential Theory, Kluwer Academic Publisher, Netherlands, 1994, 235–271

[18] P. M. Gauthier, “Subharmonic extensions and approximations”, Can. Math. Bull., 37:5 (1994), 46–53

[19] M. Ghergu, M. Manolaki, I. Netuka, H. Render, “Potential theory and approximation: highlights from the scientific work of Stephen Gardiner”, Analysis and Mathematical Physics, 9:2 (2019), 679–709

[20] W. Hansen, I. Netuka, “Jensen measures in potential theory”, Potential Analysis, 37:1 (2011), 79–90

[21] W. Hansen, I. Netuka, “Reduced functions and Jensen measures”, Proc. Amer. Math. Soc., 146:1 (2018), 153–160

[22] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. 1, Acad. Press, London, 1976

[23] L. L. Helms, Introduction to potential theory, Wiley Interscience, New York–London–Sydney–Toronto, 1969

[24] Math. USSR-Izv., 39:2 (1992), 1063–1084

[25] Siberian Math. J., 33:1 (1992), 144–148

[26] Siberian Math. J., 33:3 (1992), 519–524

[27] Russian Acad. Sci. Izv. Math., 42:1 (1994), 115–131

[28] Russian Acad. Sci. Izv. Math., 42:3 (1994), 479–500

[29] Russian Acad. Sci. Izv. Math., 45:1 (1995), 125–149

[30] Math. Notes, 59:4 (1996), 440–444

[31] B. N. Khabibullin, “Dual approach to certain questions for weighted spaces of holomorphic functions”, Israel Math. Conf. Proc. (Tel-Aviv, December 14-19, 1997), Entire functions in modern analysis, 15, Bar-Ilan Univ., Ramat Gan, 2001, 207–219

[32] B. N. Khabibullin, “Completeness of sets of complex exponentials in convex sets: open problems”, Proceedings of the NATO Advanced Study Institute on Twentieth Century Harmonic Analysis — A Celebration (Il Ciocco, Italy, July 2-15, 2000), NATO Sci. Ser. II, Math. Phys. Chem., 33, ed. James S. Byrnes, Kluwer Acad. Publ., Dordrecht, Netherlands, 2001, 371–373

[33] Funct. Anal. Appl., 35:3 (2001), 237–239

[34] Izv. Math., 65:5 (2001), 1017–1039

[35] Siberian Math. J., 44:4 (2003), 713–728

[36] Sb. Math., 198:2 (2007), 261–298

[37] B. N. Khabibullin, Completeness of systems of exponentials and sets of uniqueness, 4th ed., revised and enlarged, Bashkir State University Press, Ufa, 2012 (in Russian)

[38] Funct. Anal. Appl., 53:2 (2019), 110–123

[39] St. Petersburg Math. J., 20:1 (2009), 101–162

[40] Funct. Anal. Appl., 52:1 (2018), 21–34

[41] B. N. Khabibullin, A. P. Rozit, E. B. Khabibullina, “Order versions of the Hahn Banach theorem and envelopes. II. Applications to the function theory”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, M., 2019, 93–135 (in Russian)

[42] St. Petersburg Math. J., 26:2 (2015), 319–340

[43] P. Koosis, The logarithmic integral, v. II, Cambridge Univ. Press, Cambridge, 1992

[44] P. Koosis, Leçons sur le théorème Beurling et Malliavin, Les Publications CRM, Montréal, 1996 (in French)

[45] Sb. Math., 200:9 (2009), 1353–1382

[46] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972

[47] V. Matsaev, I. Ostrovskii, M. Sodin, “Variations on the theme of Marcinkiewicz' inequality”, J. Anal. Math., 86:1 (2002), 289–317

[48] Funct. Anal. Appl., 53:1 (2019), 65–68

[49] P. A. Meyer, Probability and potentials, Blaisdell Publ. Co., Waltham, Mass.–Toronto–London, 1966

[50] Th. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995

[51] Th. J. Ransford, “Jensen measures”, Approximation, complex analysis and potential theory (Montréal, QC), Kluwer, Dordrecht, 2001, 221–237

[52] D. Sarason, “Representing measures for $R(X)$ and their Green's functions”, J. Func. Anal., 7 (1971), 359–385