Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_4_a3, author = {T. Sh. Kalmenov and A. K. Les and U. A. Iskakova}, title = {Determination of density of elliptic potential}, journal = {Eurasian mathematical journal}, pages = {43--52}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/} }
T. Sh. Kalmenov; A. K. Les; U. A. Iskakova. Determination of density of elliptic potential. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/
[1] I. V. Bezmenov, “Transfer of Sommerfeld radiation conditions to an artificial boundary of the region based on the variational principle”, Math. Sb., 185:3 (1994), 3–24
[2] A. V. Bitsadze, Equations of mathematical physics, Nauka, M., 1982 (in Russian)
[3] B. N. Biyarov, D. L. Svistunov, G. K. Abdrasheva, “Correct singular perturbations of the Laplace operator”, Eurasian Math. J., 11:4 (2020), 25–34
[4] M. T. Jenaliyev, M. I. Ramazanov, M. G. Yergaliyev, “On an inverse problem for a parabolic equation in a degenerate angular domain”, Eurasian Math. J., 12:2 (2021), 25–38
[5] S. I. Kabanikhin, Inverse, ill-posed problems, Siberian Scientific publishers, Novosibirsk, 2008 (in Russian)
[6] S. I. Kabanikhin, Theory, applications. Inverse and ill-posed problems, De Gruyter, Germany, 2011
[7] T. Sh. Kalmenov, M. Otelbaev, G. D. Arepova, “Bitsadze-Samarskii boundary condition for elliptic-parabolic volume potential”, Doklady Mathematics, 97:3 (2018), 223–226
[8] T. Sh. Kalmenov, D. Suragan, “On the spectral questions of volumetric potential”, Doklady Akademii Nauk, 428:1 (2009), 16–19
[9] T. Sh. Kalmenov, D. Suragan, “Transfer of Sommerfeld radiation conditions to the boundary of a bounded domain”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 52:6 (2012), 1063–1068
[10] T. Sh. Kalmenov, D. Suragan, “Initial-boundary value problems for the wave equation”, Electronic Journal of Differential Equations, 48 (2014), 1–6
[11] T. Sh. Kalmenov, N. E. Tokmaganbetov, “On a non-local boundary value problem for a multidimensional heat conduction equation in a non-cylindrical region”, Siberian Mathematical Journal, 54:6 (2013), 1287–1293
[12] V. G. Romanov, S. I. Kabanikhin, Inverse problems of geoelectrics, Nauka, M., 1991 (in Russian)
[13] M. I. Tleubergenov, G. T. Ibraeva, “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93–102
[14] V. S. Vladimirov, Equations of mathematical physics, Nauka, M., 1981 (in Russian)