Determination of density of elliptic potential
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using techniques of finding boundary conditions for the volume (Newton) potential, we obtain the boundary conditions for the volume potential $$ u(x)=\int_\Omega\varepsilon(x,\xi)\rho(\xi)d\xi, $$ where $\varepsilon(x,\xi)$ is the fundamental solution of the following elliptic equation $$ L(x,D)\varepsilon(x,\xi)=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial}{\partial x_j}\varepsilon(x,\xi)+a(x)\varepsilon(x,\xi)=\delta(x,\xi). $$ Using the explicit boundary conditions for the potential $u(x)$, the density $\rho(x)$ of this potential is uniquely determined. Also, the inverse Sommerfeld problem for the Helmholtz equation is considered.
@article{EMJ_2021_12_4_a3,
     author = {T. Sh. Kalmenov and A. K. Les and U. A. Iskakova},
     title = {Determination of density of elliptic potential},
     journal = {Eurasian mathematical journal},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/}
}
TY  - JOUR
AU  - T. Sh. Kalmenov
AU  - A. K. Les
AU  - U. A. Iskakova
TI  - Determination of density of elliptic potential
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 43
EP  - 52
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/
LA  - en
ID  - EMJ_2021_12_4_a3
ER  - 
%0 Journal Article
%A T. Sh. Kalmenov
%A A. K. Les
%A U. A. Iskakova
%T Determination of density of elliptic potential
%J Eurasian mathematical journal
%D 2021
%P 43-52
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/
%G en
%F EMJ_2021_12_4_a3
T. Sh. Kalmenov; A. K. Les; U. A. Iskakova. Determination of density of elliptic potential. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/