Determination of density of elliptic potential
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using techniques of finding boundary conditions for the volume (Newton) potential, we obtain the boundary conditions for the volume potential $$ u(x)=\int_\Omega\varepsilon(x,\xi)\rho(\xi)d\xi, $$ where $\varepsilon(x,\xi)$ is the fundamental solution of the following elliptic equation $$ L(x,D)\varepsilon(x,\xi)=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial}{\partial x_j}\varepsilon(x,\xi)+a(x)\varepsilon(x,\xi)=\delta(x,\xi). $$ Using the explicit boundary conditions for the potential $u(x)$, the density $\rho(x)$ of this potential is uniquely determined. Also, the inverse Sommerfeld problem for the Helmholtz equation is considered.
@article{EMJ_2021_12_4_a3,
     author = {T. Sh. Kalmenov and A. K. Les and U. A. Iskakova},
     title = {Determination of density of elliptic potential},
     journal = {Eurasian mathematical journal},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/}
}
TY  - JOUR
AU  - T. Sh. Kalmenov
AU  - A. K. Les
AU  - U. A. Iskakova
TI  - Determination of density of elliptic potential
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 43
EP  - 52
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/
LA  - en
ID  - EMJ_2021_12_4_a3
ER  - 
%0 Journal Article
%A T. Sh. Kalmenov
%A A. K. Les
%A U. A. Iskakova
%T Determination of density of elliptic potential
%J Eurasian mathematical journal
%D 2021
%P 43-52
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/
%G en
%F EMJ_2021_12_4_a3
T. Sh. Kalmenov; A. K. Les; U. A. Iskakova. Determination of density of elliptic potential. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/

[1] I. V. Bezmenov, “Transfer of Sommerfeld radiation conditions to an artificial boundary of the region based on the variational principle”, Math. Sb., 185:3 (1994), 3–24

[2] A. V. Bitsadze, Equations of mathematical physics, Nauka, M., 1982 (in Russian)

[3] B. N. Biyarov, D. L. Svistunov, G. K. Abdrasheva, “Correct singular perturbations of the Laplace operator”, Eurasian Math. J., 11:4 (2020), 25–34

[4] M. T. Jenaliyev, M. I. Ramazanov, M. G. Yergaliyev, “On an inverse problem for a parabolic equation in a degenerate angular domain”, Eurasian Math. J., 12:2 (2021), 25–38

[5] S. I. Kabanikhin, Inverse, ill-posed problems, Siberian Scientific publishers, Novosibirsk, 2008 (in Russian)

[6] S. I. Kabanikhin, Theory, applications. Inverse and ill-posed problems, De Gruyter, Germany, 2011

[7] T. Sh. Kalmenov, M. Otelbaev, G. D. Arepova, “Bitsadze-Samarskii boundary condition for elliptic-parabolic volume potential”, Doklady Mathematics, 97:3 (2018), 223–226

[8] T. Sh. Kalmenov, D. Suragan, “On the spectral questions of volumetric potential”, Doklady Akademii Nauk, 428:1 (2009), 16–19

[9] T. Sh. Kalmenov, D. Suragan, “Transfer of Sommerfeld radiation conditions to the boundary of a bounded domain”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 52:6 (2012), 1063–1068

[10] T. Sh. Kalmenov, D. Suragan, “Initial-boundary value problems for the wave equation”, Electronic Journal of Differential Equations, 48 (2014), 1–6

[11] T. Sh. Kalmenov, N. E. Tokmaganbetov, “On a non-local boundary value problem for a multidimensional heat conduction equation in a non-cylindrical region”, Siberian Mathematical Journal, 54:6 (2013), 1287–1293

[12] V. G. Romanov, S. I. Kabanikhin, Inverse problems of geoelectrics, Nauka, M., 1991 (in Russian)

[13] M. I. Tleubergenov, G. T. Ibraeva, “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93–102

[14] V. S. Vladimirov, Equations of mathematical physics, Nauka, M., 1981 (in Russian)