Determination of density of elliptic potential
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, using techniques of finding boundary conditions for the volume (Newton)
potential, we obtain the boundary conditions for the volume potential
$$
u(x)=\int_\Omega\varepsilon(x,\xi)\rho(\xi)d\xi,
$$
where $\varepsilon(x,\xi)$ is the fundamental solution of the following elliptic equation
$$
L(x,D)\varepsilon(x,\xi)=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial}{\partial x_j}\varepsilon(x,\xi)+a(x)\varepsilon(x,\xi)=\delta(x,\xi).
$$
Using the explicit boundary conditions for the potential $u(x)$, the density $\rho(x)$ of this potential is
uniquely determined. Also, the inverse Sommerfeld problem for the Helmholtz equation is considered.
@article{EMJ_2021_12_4_a3,
author = {T. Sh. Kalmenov and A. K. Les and U. A. Iskakova},
title = {Determination of density of elliptic potential},
journal = {Eurasian mathematical journal},
pages = {43--52},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/}
}
T. Sh. Kalmenov; A. K. Les; U. A. Iskakova. Determination of density of elliptic potential. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 43-52. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a3/