On the relation between two approaches to exterior penalty method for constrained optimal control problems
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 21-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to discuss, via the exterior penalty functions method, a class of nonlinear optimal control problems with additional equality and inequality state and control constraints. Two different kinds of penalties are given, in the first the state and control constrained optimal control problem is replaced by a sequence of unconstrained control problems, while the second type transforms the constrained optimal control problem into a sequence of truly unconstrained optimization problems. Two convergence theorems are given to obtain approximate and, in the limit, exact solution of the given constrained optimal control problem. In particular, we show how the necessary conditions of optimality of these two methods yield the familiar Lagrange multipliers of the original constrained optimal control problem in the limit.
@article{EMJ_2021_12_4_a2,
     author = {A. Hammoudi and M. Benharrat},
     title = {On the relation between two approaches to exterior penalty method for constrained optimal control problems},
     journal = {Eurasian mathematical journal},
     pages = {21--42},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/}
}
TY  - JOUR
AU  - A. Hammoudi
AU  - M. Benharrat
TI  - On the relation between two approaches to exterior penalty method for constrained optimal control problems
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 21
EP  - 42
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/
LA  - en
ID  - EMJ_2021_12_4_a2
ER  - 
%0 Journal Article
%A A. Hammoudi
%A M. Benharrat
%T On the relation between two approaches to exterior penalty method for constrained optimal control problems
%J Eurasian mathematical journal
%D 2021
%P 21-42
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/
%G en
%F EMJ_2021_12_4_a2
A. Hammoudi; M. Benharrat. On the relation between two approaches to exterior penalty method for constrained optimal control problems. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 21-42. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/

[1] A. V. Balakrishnan, “On a new computing method in optimal control”, SIAM J. Control, 6 (1968), 149–173

[2] M. Benharrat, H. Mokhtar-Kharroubi, “Exterior penalty in optimal control problem with state-control constraints”, Rend. Circ. Mat. Palermo, 59:3 (2010), 389–403

[3] L. D. Berkovitz, “A penalty function proof of the maximum principle”, Applied Mathematics and Optimization, 2 (1976), 291–303

[4] F. Borrelli, Constrained optimal control of linear and hybrid systems, Springer, 2003

[5] H. G. Bock, J. P. Schloeder, E. Kostina, “Numerical methods for optimal control problems appearing in model validation of dynamic processes with application to dynamic robot calibration”, Journal of the Chinese Institute of Engineers, 35:1 (2012), 17–23

[6] H. Brézis, Analyse fonctionnelle: théorie et applications, Masson, 1987

[7] E. Casas, F. Troltzsch, “Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls”, SIAM J. Control Optim., 52:2 (2014), 1010–1033

[8] R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations”, Bull. Amer. Math. Soc., 49 (1943), 1–23

[9] A. V. Dmitruk, A. M. Kaganovich, “Maximum principle for optimal control problems with intermediate constraints”, Computational Mathematics and Modeling, 22:2 (2011), 180–215

[10] J. A. De Dona, J. Lévine, “On barriers in state and input constrained nonlinear systems”, SIAM J. Control Optim., 51:4 (2013), 3208–3234

[11] A. Ya. Dubovitskii, V. A. Dubovitskiy, “The maximum principle in regular optimal control problems where the ends of the phase path are on the boundary of the phase constraint”, Avtomat. i Telemekh., 1987, no. 12, 25–33

[12] R. F. Hartl, S. P. Sethi, R. G. Vickson, “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Review, 37:2 (1995), 181–218

[13] A. V. Fiacco, G. P. Mccormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York, 1968

[14] L. Cesari, Optimization theory and application, problems with ordinary differential equations, Springer-Verlage, 1983

[15] F. Clarke, M. R. de Pinho, “Optimal control problems with mixed constraints”, SIAM J. Control Optim., 48:7 (2010), 4500–4524

[16] J. Cullum, Penalty functions and nonconvex continuous optimal control problems, Rep. RC 2154, IBM, Yorktown Heights, New York, 1968

[17] A. V. Fiacco, A. P. Jones, “Generalized penalty methods in topological spaces”, SIAM J. Appl. Math., 5 (1969), 996–1000

[18] V. F. Dem'yanov, F. Giannessi, V. V. Karelin, “Optimal control problems via exact penalty functions”, J. Glob. Optim., 12 (1998), 215–223

[19] M. Gugat, M. Herty, “The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations”, Optim. Methods Softw., 25:4 (2010), 573–599

[20] M. Gugat, E. Zuazua, “Exact penalization of terminal constraints for optimal control problems”, Optim. Control Appl. Meth., 37:6 (2016), 1329–1354

[21] A. P. Jones, G. P. McCormick, “A generalization of the method of Balakrishnan: inequality constraints and initial conditions”, SIAM J. Control, 8 (1970), 218–225

[22] R. Lucchetti, F. Patrone, “On Nemytskii's operator and its application to the lower semicontinuity of integral functionals”, Indiana Univ. Math. J., 29:5 (1980), 703–713

[23] P. Malisani, F. Chaplais, N. Petit, “An interior penalty method for optimal control problems with state and input constraints of nonlinear systems”, Optim. Control Appl. Meth., 37 (2016), 3–33

[24] L. C. MacLean, Y. Zhao, W. T. Ziemba, “Optimal capital growth with convex shortfall penalties”, Quantitative Finance, 16:1 (2016), 101–117

[25] D. Q. Mayne, E. Polak, “An exact penalty function algorithm for optimal control problems with control and terminal equality constraints. Part 1”, J. Optim. Theory Appl., 32:2 (1980), 211–246

[26] D. Q. Mayne, E. Polak, “An exact penalty function algorithm for optimal control problems with control and terminal equality constraints. Part 2”, J. Optim. Theory Appl., 32:3 (1980), 345–364

[27] N. G. Medhin, “Necessary conditions for optimal control problems with bounded state by a penalty method”, J. Optim. Theory Appl., 52:1 (1987), 97–110

[28] B. Mond, M. Hanson, “Duality for control problems”, SIAM J. Contr., 6 (1968), 114–120

[29] A. A. Milyutin, N. P. Osmolovskii, Calculus of variations and optimal control, American Mathematical Society, 1998

[30] L. W. Neustadt, Optimization: a theory of necessary conditions, Princeton University Press, 1971

[31] K. Okamura, “Some mathematical theory of the penalty method for solving optimum control problems”, SIAM J. Control, 2 (1965), 317–331

[32] N. P. Osmolovskii, “Necessary second-order conditions for a weak local minimum in a problem with endpoint and control constraints”, J. Math. Anal. Appl., 457:2 (2018), 1613–1633

[33] S. M. Robinson, “Stability theorems for systems of inequalities, Part II: Differentiable nonlinear systems”, SIAM J. Numer. Anal., 13 (1976), 497–513

[34] D. L. Russell, “Penalty functions and bounded phase coordinate control”, SIAM J. Control, 2 (1965), 409–422

[35] D. L. Russell, “Application of the epsilon method and the method of multipliers to a non-linear optimal control problem”, Int. J. Control, 24:2 (1976), 149–164

[36] E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley, New York, 1967

[37] R. E. Kopp, H. G. Moyer, “Trajectory optimization techniques”, Advances in Control Systems, ed. C. T. Leondes, Academic Press, New York, 1966

[38] P. Nepomniastchy, Méthode de pénalisation pour les systéme gouvernés par des équations differentielles avec contraintes sur l'état du systéme, Cahier I.R.I.A., I.N.F 7224/72027, 1972

[39] R. Pytlak, Numerical methods for optimal control problems with state constraints, Springer Science Business Media, 1999

[40] M. Stoll, J. Pearson, A. Wathen, “Preconditioners for state constrained optimal control problems with MoreauYosida penalty function”, Numer. Linear Algebra Appl. Numer., 21:1 (2014), 81–97

[41] S. Ya. Serovaiskii, “Approximate penalty methods in optimal control problems for nonsmooth singular systems”, Mathematical Notes, 76:6 (2004), 834–843

[42] A. Stauss, J. Macki, Introduction to optimal control theory, Springer-Verlage, 1982

[43] S. Prasad, R. N. Mukherjee, “A generalization of a result of Jones McCormick on optimal control theory”, Indian J. Pure and Appl. Math., 15:11 (1984), 1190–1198

[44] B. T. Poljak, “Semicontinuity of integral functionals and existence theorems for extremal problems”, Mathematiceskii Sbornik, 78 (1969), 65–84 (in Russian)

[45] X. Wua, K. Zhanga, C. Suna, “Constrained optimal control of switched systems based on modified BFGS algorithm and filled function method”, Int. J. Comput. Math., 91:8 (2014), 1713–1729

[46] A. Q. Xing, “The exact penalty function method in constrained optimal control problems”, J. Math. Anal. and Applic., 186 (1994), 514–522

[47] A. Q. Xing, “Applications of the penalty function method in constrained optimal control problems”, J. Appl. Math. and Simulation, 2:4 (1989), 251–265

[48] A. Q. Xing, C. L. Wang, “Applications of the exterior penalty method in constrained optimal control problems”, Optim. Control Appl. Meth., 10:4 (1989), 333–345

[49] W. I. Zangwill, “Nonlinear programming via penalty functions”, Management Sci., A13:5 (1967), 344–358

[50] R. A. Zboon, S. Prasad Yadav, C. Mohan, “Penalty method for an optimal control problem with equality and inequality constraints”, Indian J. Pure and Appl. Math., 30:1 (1999), 1–14