Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_4_a2, author = {A. Hammoudi and M. Benharrat}, title = {On the relation between two approaches to exterior penalty method for constrained optimal control problems}, journal = {Eurasian mathematical journal}, pages = {21--42}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/} }
TY - JOUR AU - A. Hammoudi AU - M. Benharrat TI - On the relation between two approaches to exterior penalty method for constrained optimal control problems JO - Eurasian mathematical journal PY - 2021 SP - 21 EP - 42 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/ LA - en ID - EMJ_2021_12_4_a2 ER -
%0 Journal Article %A A. Hammoudi %A M. Benharrat %T On the relation between two approaches to exterior penalty method for constrained optimal control problems %J Eurasian mathematical journal %D 2021 %P 21-42 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/ %G en %F EMJ_2021_12_4_a2
A. Hammoudi; M. Benharrat. On the relation between two approaches to exterior penalty method for constrained optimal control problems. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 21-42. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a2/
[1] A. V. Balakrishnan, “On a new computing method in optimal control”, SIAM J. Control, 6 (1968), 149–173
[2] M. Benharrat, H. Mokhtar-Kharroubi, “Exterior penalty in optimal control problem with state-control constraints”, Rend. Circ. Mat. Palermo, 59:3 (2010), 389–403
[3] L. D. Berkovitz, “A penalty function proof of the maximum principle”, Applied Mathematics and Optimization, 2 (1976), 291–303
[4] F. Borrelli, Constrained optimal control of linear and hybrid systems, Springer, 2003
[5] H. G. Bock, J. P. Schloeder, E. Kostina, “Numerical methods for optimal control problems appearing in model validation of dynamic processes with application to dynamic robot calibration”, Journal of the Chinese Institute of Engineers, 35:1 (2012), 17–23
[6] H. Brézis, Analyse fonctionnelle: théorie et applications, Masson, 1987
[7] E. Casas, F. Troltzsch, “Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls”, SIAM J. Control Optim., 52:2 (2014), 1010–1033
[8] R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations”, Bull. Amer. Math. Soc., 49 (1943), 1–23
[9] A. V. Dmitruk, A. M. Kaganovich, “Maximum principle for optimal control problems with intermediate constraints”, Computational Mathematics and Modeling, 22:2 (2011), 180–215
[10] J. A. De Dona, J. Lévine, “On barriers in state and input constrained nonlinear systems”, SIAM J. Control Optim., 51:4 (2013), 3208–3234
[11] A. Ya. Dubovitskii, V. A. Dubovitskiy, “The maximum principle in regular optimal control problems where the ends of the phase path are on the boundary of the phase constraint”, Avtomat. i Telemekh., 1987, no. 12, 25–33
[12] R. F. Hartl, S. P. Sethi, R. G. Vickson, “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Review, 37:2 (1995), 181–218
[13] A. V. Fiacco, G. P. Mccormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York, 1968
[14] L. Cesari, Optimization theory and application, problems with ordinary differential equations, Springer-Verlage, 1983
[15] F. Clarke, M. R. de Pinho, “Optimal control problems with mixed constraints”, SIAM J. Control Optim., 48:7 (2010), 4500–4524
[16] J. Cullum, Penalty functions and nonconvex continuous optimal control problems, Rep. RC 2154, IBM, Yorktown Heights, New York, 1968
[17] A. V. Fiacco, A. P. Jones, “Generalized penalty methods in topological spaces”, SIAM J. Appl. Math., 5 (1969), 996–1000
[18] V. F. Dem'yanov, F. Giannessi, V. V. Karelin, “Optimal control problems via exact penalty functions”, J. Glob. Optim., 12 (1998), 215–223
[19] M. Gugat, M. Herty, “The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations”, Optim. Methods Softw., 25:4 (2010), 573–599
[20] M. Gugat, E. Zuazua, “Exact penalization of terminal constraints for optimal control problems”, Optim. Control Appl. Meth., 37:6 (2016), 1329–1354
[21] A. P. Jones, G. P. McCormick, “A generalization of the method of Balakrishnan: inequality constraints and initial conditions”, SIAM J. Control, 8 (1970), 218–225
[22] R. Lucchetti, F. Patrone, “On Nemytskii's operator and its application to the lower semicontinuity of integral functionals”, Indiana Univ. Math. J., 29:5 (1980), 703–713
[23] P. Malisani, F. Chaplais, N. Petit, “An interior penalty method for optimal control problems with state and input constraints of nonlinear systems”, Optim. Control Appl. Meth., 37 (2016), 3–33
[24] L. C. MacLean, Y. Zhao, W. T. Ziemba, “Optimal capital growth with convex shortfall penalties”, Quantitative Finance, 16:1 (2016), 101–117
[25] D. Q. Mayne, E. Polak, “An exact penalty function algorithm for optimal control problems with control and terminal equality constraints. Part 1”, J. Optim. Theory Appl., 32:2 (1980), 211–246
[26] D. Q. Mayne, E. Polak, “An exact penalty function algorithm for optimal control problems with control and terminal equality constraints. Part 2”, J. Optim. Theory Appl., 32:3 (1980), 345–364
[27] N. G. Medhin, “Necessary conditions for optimal control problems with bounded state by a penalty method”, J. Optim. Theory Appl., 52:1 (1987), 97–110
[28] B. Mond, M. Hanson, “Duality for control problems”, SIAM J. Contr., 6 (1968), 114–120
[29] A. A. Milyutin, N. P. Osmolovskii, Calculus of variations and optimal control, American Mathematical Society, 1998
[30] L. W. Neustadt, Optimization: a theory of necessary conditions, Princeton University Press, 1971
[31] K. Okamura, “Some mathematical theory of the penalty method for solving optimum control problems”, SIAM J. Control, 2 (1965), 317–331
[32] N. P. Osmolovskii, “Necessary second-order conditions for a weak local minimum in a problem with endpoint and control constraints”, J. Math. Anal. Appl., 457:2 (2018), 1613–1633
[33] S. M. Robinson, “Stability theorems for systems of inequalities, Part II: Differentiable nonlinear systems”, SIAM J. Numer. Anal., 13 (1976), 497–513
[34] D. L. Russell, “Penalty functions and bounded phase coordinate control”, SIAM J. Control, 2 (1965), 409–422
[35] D. L. Russell, “Application of the epsilon method and the method of multipliers to a non-linear optimal control problem”, Int. J. Control, 24:2 (1976), 149–164
[36] E. B. Lee, L. Markus, Foundations of optimal control theory, John Wiley, New York, 1967
[37] R. E. Kopp, H. G. Moyer, “Trajectory optimization techniques”, Advances in Control Systems, ed. C. T. Leondes, Academic Press, New York, 1966
[38] P. Nepomniastchy, Méthode de pénalisation pour les systéme gouvernés par des équations differentielles avec contraintes sur l'état du systéme, Cahier I.R.I.A., I.N.F 7224/72027, 1972
[39] R. Pytlak, Numerical methods for optimal control problems with state constraints, Springer Science Business Media, 1999
[40] M. Stoll, J. Pearson, A. Wathen, “Preconditioners for state constrained optimal control problems with MoreauYosida penalty function”, Numer. Linear Algebra Appl. Numer., 21:1 (2014), 81–97
[41] S. Ya. Serovaiskii, “Approximate penalty methods in optimal control problems for nonsmooth singular systems”, Mathematical Notes, 76:6 (2004), 834–843
[42] A. Stauss, J. Macki, Introduction to optimal control theory, Springer-Verlage, 1982
[43] S. Prasad, R. N. Mukherjee, “A generalization of a result of Jones McCormick on optimal control theory”, Indian J. Pure and Appl. Math., 15:11 (1984), 1190–1198
[44] B. T. Poljak, “Semicontinuity of integral functionals and existence theorems for extremal problems”, Mathematiceskii Sbornik, 78 (1969), 65–84 (in Russian)
[45] X. Wua, K. Zhanga, C. Suna, “Constrained optimal control of switched systems based on modified BFGS algorithm and filled function method”, Int. J. Comput. Math., 91:8 (2014), 1713–1729
[46] A. Q. Xing, “The exact penalty function method in constrained optimal control problems”, J. Math. Anal. and Applic., 186 (1994), 514–522
[47] A. Q. Xing, “Applications of the penalty function method in constrained optimal control problems”, J. Appl. Math. and Simulation, 2:4 (1989), 251–265
[48] A. Q. Xing, C. L. Wang, “Applications of the exterior penalty method in constrained optimal control problems”, Optim. Control Appl. Meth., 10:4 (1989), 333–345
[49] W. I. Zangwill, “Nonlinear programming via penalty functions”, Management Sci., A13:5 (1967), 344–358
[50] R. A. Zboon, S. Prasad Yadav, C. Mohan, “Penalty method for an optimal control problem with equality and inequality constraints”, Indian J. Pure and Appl. Math., 30:1 (1999), 1–14