Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_4_a1, author = {A. V. Arutyunov and S. E. Zhukovskiy}, title = {On exact penalties for constrained optimization problems in metric spaces}, journal = {Eurasian mathematical journal}, pages = {10--20}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/} }
TY - JOUR AU - A. V. Arutyunov AU - S. E. Zhukovskiy TI - On exact penalties for constrained optimization problems in metric spaces JO - Eurasian mathematical journal PY - 2021 SP - 10 EP - 20 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/ LA - en ID - EMJ_2021_12_4_a1 ER -
A. V. Arutyunov; S. E. Zhukovskiy. On exact penalties for constrained optimization problems in metric spaces. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 10-20. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/
[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668
[2] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovsky, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828
[3] A. V. Arutyunov, A. F. Izmailov, “Directional stability theorem and directional metric regularity”, Math. Oper. Res., 31:3 (2006), 526–543
[4] A. V. Arutyunov, D. Yu. Karamzin, “Non-degenerate necessary optimality conditions for the optimal control problem with equality-type state constraints”, J. Glob. Optim., 64:4 (2016), 623–647
[5] A. V. Arutyunov, S. E. Zhukovskiy, “Variational principles in nonlinear analysis and their generalization”, Math. Notes, 103:6 (2018), 1014–1019
[6] A. V. Arutyunov, S. E. Zhukovskiy, N. G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169
[7] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Kantorovich's fixed point theorem in metric spaces and coincidence points”, Proc. Steklov Inst. Math., 304 (2019), 60–73
[8] A. A. Arutyunov, S. E. Zhukovskiy, “Existence of the n-th root in finite-dimensional power-associative algebras over reals”, Eurasian Math. J., 8:3 (2017), 28–35
[9] E. R. Avakov, A. V. Arutyunov, A. F. Izmailov, “Exact penalties for optimization problems with 2-regular equality constraints”, Comput. Math. Math. Phys., 48:3 (2008), 346–353
[10] E. R. Avakov, A. V. Arutyunov, A. F. Izmailov, “On convergence rate estimates for power penalty methods”, Comput. Math. Math. Phys., 44:10 (2004), 1684–1695
[11] J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer, N.Y., 2000
[12] D. Boukari, A. V. Fiacco, “Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993”, Optimization, 32 (1995), 301–334
[13] J. V. Burke, “An exact penalization viewpoint of constrained optimization”, SIAM J. Control Optim., 29 (1991), 968–998
[14] F. H. Clarke, Optimization, nonsmooth analysis, Wiley-Interscience, New York, 1983
[15] G. Di Pillo, L. Grippo, “Exact penalty functions in constrained optimization”, SIAM J. Control Optim., 27 (1989), 1333–1360
[16] I. I. Eremin, “The penalty method in convex programming”, Soviet Math. Dokl., 8 (1966), 459–462
[17] D. Fullerton, “On the possibility of an inverse relationship between tax rates and government revenues”, Journal of Public Economics, 19:1 (1982), 3–22
[18] R. Hosseinzadeh, “Maps preserving the coincidence points of operators”, Eurasian Math. J., 12:3 (2021), 42–45
[19] A. D. Ioffe, “Metric regularity and subdi erential calculus”, Russian Math. Surveys, 55:3 (2000), 501–558
[20] J. M. Malcomson, “Some analytics of the laffer curve”, Journal of Public Economics, 29:3 (1986), 263–279
[21] R. Sengupta, “On fixed points of contraction maps acting in (q1, q2)-quasimetric spaces and geometric properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76
[22] A. Uderzo, “Exact penalty functions and calmness for mathematical programming under nonlinear perturbations”, Nonlinear Analysis, 73 (2010), 1596–1609
[23] A. Uderzo, “An implicit multifunction theorem for the hemiregularity of mappings with application to constrained optimization”, Pure and Applied Functional Analysis, 3:2 (2018), 371–391
[24] R. Vinter, Optimal control, Springer, N. Y., 2000
[25] W. I. Zangwill, “Nonlinear programming via penalty functions”, Management Sci, 13 (1967), 344–358
[26] A. J. Zaslavski, “A suffcient condition for exact penalty functions”, Optim. Lett., 3 (2009), 593–602
[27] S. E. Zhukovskiy, O. V. Filippova, “Exact penalty constants for extremal problems in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 1990–1997 (in Russian)