On exact penalties for constrained optimization problems in metric spaces
Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 10-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimization of Lipschitz continuous functions over the set of coincidence points of mappings between metric spaces is considered. It is shown that under the assumptions of the known coincidence point theorems, the problem under consideration possesses the exact penalty property. For proving this fact, we obtain a modification of the exact penalization theorem.
@article{EMJ_2021_12_4_a1,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {On exact penalties for constrained optimization problems in metric spaces},
     journal = {Eurasian mathematical journal},
     pages = {10--20},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - On exact penalties for constrained optimization problems in metric spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 10
EP  - 20
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/
LA  - en
ID  - EMJ_2021_12_4_a1
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T On exact penalties for constrained optimization problems in metric spaces
%J Eurasian mathematical journal
%D 2021
%P 10-20
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/
%G en
%F EMJ_2021_12_4_a1
A. V. Arutyunov; S. E. Zhukovskiy. On exact penalties for constrained optimization problems in metric spaces. Eurasian mathematical journal, Tome 12 (2021) no. 4, pp. 10-20. http://geodesic.mathdoc.fr/item/EMJ_2021_12_4_a1/

[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668

[2] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovsky, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828

[3] A. V. Arutyunov, A. F. Izmailov, “Directional stability theorem and directional metric regularity”, Math. Oper. Res., 31:3 (2006), 526–543

[4] A. V. Arutyunov, D. Yu. Karamzin, “Non-degenerate necessary optimality conditions for the optimal control problem with equality-type state constraints”, J. Glob. Optim., 64:4 (2016), 623–647

[5] A. V. Arutyunov, S. E. Zhukovskiy, “Variational principles in nonlinear analysis and their generalization”, Math. Notes, 103:6 (2018), 1014–1019

[6] A. V. Arutyunov, S. E. Zhukovskiy, N. G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169

[7] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Kantorovich's fixed point theorem in metric spaces and coincidence points”, Proc. Steklov Inst. Math., 304 (2019), 60–73

[8] A. A. Arutyunov, S. E. Zhukovskiy, “Existence of the n-th root in finite-dimensional power-associative algebras over reals”, Eurasian Math. J., 8:3 (2017), 28–35

[9] E. R. Avakov, A. V. Arutyunov, A. F. Izmailov, “Exact penalties for optimization problems with 2-regular equality constraints”, Comput. Math. Math. Phys., 48:3 (2008), 346–353

[10] E. R. Avakov, A. V. Arutyunov, A. F. Izmailov, “On convergence rate estimates for power penalty methods”, Comput. Math. Math. Phys., 44:10 (2004), 1684–1695

[11] J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer, N.Y., 2000

[12] D. Boukari, A. V. Fiacco, “Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993”, Optimization, 32 (1995), 301–334

[13] J. V. Burke, “An exact penalization viewpoint of constrained optimization”, SIAM J. Control Optim., 29 (1991), 968–998

[14] F. H. Clarke, Optimization, nonsmooth analysis, Wiley-Interscience, New York, 1983

[15] G. Di Pillo, L. Grippo, “Exact penalty functions in constrained optimization”, SIAM J. Control Optim., 27 (1989), 1333–1360

[16] I. I. Eremin, “The penalty method in convex programming”, Soviet Math. Dokl., 8 (1966), 459–462

[17] D. Fullerton, “On the possibility of an inverse relationship between tax rates and government revenues”, Journal of Public Economics, 19:1 (1982), 3–22

[18] R. Hosseinzadeh, “Maps preserving the coincidence points of operators”, Eurasian Math. J., 12:3 (2021), 42–45

[19] A. D. Ioffe, “Metric regularity and subdi erential calculus”, Russian Math. Surveys, 55:3 (2000), 501–558

[20] J. M. Malcomson, “Some analytics of the laffer curve”, Journal of Public Economics, 29:3 (1986), 263–279

[21] R. Sengupta, “On fixed points of contraction maps acting in (q1, q2)-quasimetric spaces and geometric properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76

[22] A. Uderzo, “Exact penalty functions and calmness for mathematical programming under nonlinear perturbations”, Nonlinear Analysis, 73 (2010), 1596–1609

[23] A. Uderzo, “An implicit multifunction theorem for the hemiregularity of mappings with application to constrained optimization”, Pure and Applied Functional Analysis, 3:2 (2018), 371–391

[24] R. Vinter, Optimal control, Springer, N. Y., 2000

[25] W. I. Zangwill, “Nonlinear programming via penalty functions”, Management Sci, 13 (1967), 344–358

[26] A. J. Zaslavski, “A suffcient condition for exact penalty functions”, Optim. Lett., 3 (2009), 593–602

[27] S. E. Zhukovskiy, O. V. Filippova, “Exact penalty constants for extremal problems in metric spaces”, Tambov University Reports. Series: Natural and Technical Sciences, 21:6 (2016), 1990–1997 (in Russian)