Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_3_a7, author = {B. Silvestri}, title = {Stokes-type integral equalities for scalarly essentially integrable locally convex vector-valued forms which are functions of an unbounded spectral operator}, journal = {Eurasian mathematical journal}, pages = {78--89}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a7/} }
TY - JOUR AU - B. Silvestri TI - Stokes-type integral equalities for scalarly essentially integrable locally convex vector-valued forms which are functions of an unbounded spectral operator JO - Eurasian mathematical journal PY - 2021 SP - 78 EP - 89 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a7/ LA - en ID - EMJ_2021_12_3_a7 ER -
%0 Journal Article %A B. Silvestri %T Stokes-type integral equalities for scalarly essentially integrable locally convex vector-valued forms which are functions of an unbounded spectral operator %J Eurasian mathematical journal %D 2021 %P 78-89 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a7/ %G en %F EMJ_2021_12_3_a7
B. Silvestri. Stokes-type integral equalities for scalarly essentially integrable locally convex vector-valued forms which are functions of an unbounded spectral operator. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 78-89. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a7/
[1] N. Bourbaki, Integration, v. 1, 2, Springer, 2003
[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, II, III, Interscience Publ
[3] B. Silvestri, Integral equalities for functions of unbounded spectral operators in Banach spaces, Dissertationes Math., 464, 2009, 60 pp. | DOI | Zbl
[4] B. Silvestri, Scalarly essentially integrable locally convex vector-valued tensor fields. Stokes theorem, arXiv: 2010.02327