Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_3_a6, author = {A. Yu. Savin and K. N. Zhuikov}, title = {$\eta${-Invariant} and index for operators on the real line periodic at infinity}, journal = {Eurasian mathematical journal}, pages = {57--77}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/} }
TY - JOUR AU - A. Yu. Savin AU - K. N. Zhuikov TI - $\eta$-Invariant and index for operators on the real line periodic at infinity JO - Eurasian mathematical journal PY - 2021 SP - 57 EP - 77 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/ LA - en ID - EMJ_2021_12_3_a6 ER -
A. Yu. Savin; K. N. Zhuikov. $\eta$-Invariant and index for operators on the real line periodic at infinity. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 57-77. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/
[1] A. Antonevich, A. Lebedev, Functional differential equations. I. $C^*$-theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, Harlow, Longman, 1994 | Zbl
[2] M. Atiyah, V. Patodi, I. Singer, “Spectral asymmetry and Riemannian geometry I, II, III”, Proc. Math. Cambridge Philos. Soc., 77 (1975), 43–69 ; 78 (1976), 405–432 ; 79 (1976), 71–99 | DOI | Zbl | DOI | DOI | Zbl
[3] M. F. Atiyah, “Elliptic operators, discrete groups, von Neumann algebras”, Astérisque, 32–33, 1976, 43–72 | Zbl
[4] G. Bateman, A. Erdélyi, Higher transcendental functions, Nauka, M., 1973 (in Russian)
[5] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | Zbl
[6] B. Blackadar, K-theory for operator algebras, Second edition, Cambridge University Press, Cambridge, 1998 | Zbl
[7] G. Bogveradze, L. P. Castro, “On the Fredholm property and index of Wiener-Hopf plus/minus Hankel operators with piecewise almost periodic symbols”, Appl. Math. Inform. Mech., 12 (2007), 25–40 ; 119–120 | Zbl
[8] G. Bogveradze, L. P. Castro, “On the Fredholm index of matrix Wiener-Hopf plus/minus Hankel operators with semi-almost periodic symbols”, Oper. Theory Adv. Appl., 181 (2008), 143–158 | Zbl
[9] A. Böttcher, Yu. I. Karlovich, I. M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Birkhäuser, Basel, 2002 | Zbl
[10] B. V. Fedosov, B. W. Schulze, N. Tarkhanov, “The index of higher order operators on singular surfaces”, Pacific J. of Math., 191 (1999), 25–48 | DOI | Zbl
[11] H. Inoue, S. Richard, “Index theorems for Fredholm, semi-Fredholm and almost-periodic operators: all in one example”, J. Noncommut. Geom., 13 (2019), 1359–1380 | DOI | Zbl
[12] Trudy Mosk. Mat. Obshch., 15 (1966), 400–451 | Zbl
[13] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53 (2016), 343–414 | DOI | Zbl
[14] M. Lesch, H. Moscovici, M. J. Pflaum, Connes-Chern character for manifolds with boundary and eta cochains, Mem. Amer. Math. Soc., 220, 2012, viii+92 pp.
[15] M. Lesch, M. Pflaum, “Traces on algebras of parameter dependent pseudodi erential operators and the eta-invariant”, Trans. Amer. Math. Soc., 352 (2000), 4911–4936 | DOI | Zbl
[16] R. Mazzeo, D. Pollack, K. Uhlenbeck, “Moduli spaces of singular Yamabe metrics”, J. Amer. Math. Soc., 9 (1996), 303–344 | DOI | Zbl
[17] S. T. Melo, “K-theory of pseudodifferential operators with semi-periodic symbols”, K-theory, 37 (2006), 235–248 | DOI | Zbl
[18] R. Melrose, “The eta invariant and families of pseudodifferential operators”, Math. Research Letters, 2 (1995), 541–561 | DOI | Zbl
[19] A. S. Mishchenko, “Banach algebras, pseudodifferential operators, and their application to K-theory”, Russ. Math. Surv., 34 (1979), 77–91 | DOI | Zbl
[20] T. Mrowka, D. Ruberman, N. Saveliev, “An index theorem for end-periodic operators”, Compositio Math., 152 (2016), 399–444 | DOI | Zbl
[21] V. S. Rabinovich, “On the algebra generated by pseudodi erential operators on $R^n$. Operators of multiplication by almost-periodic functions, and shift operators”, Sov. Math. Dokl., 25 (1982), 498–502 | Zbl
[22] B.-W. Schulze, B. Sternin, V. Shatalov, “On the index of di erential operators on manifolds with conical singularities”, Annals of Global Analysis and Geometry, 16 (1998), 141–172 | DOI | Zbl
[23] M. A. Shubin, “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russ. Math. Surv., 34 (1979), 109–157 | DOI | Zbl
[24] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin–Heidelberg, 1987 | Zbl
[25] C. H. Taubes, “Gauge theory on asymptotically periodic 4-manifolds”, J. Differential Geom., 25 (1987), 363–430 | DOI | Zbl