$\eta$-Invariant and index for operators on the real line periodic at infinity
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 57-77

Voir la notice de l'article provenant de la source Math-Net.Ru

We define $\eta$-invariants for periodic pseudodifferential operators on the real line and establish their main properties. In particular, it is proved that the $\eta$-invariant satisfies logarithmic property and a formula for the derivative of the $\eta$-invariant of an operator family with respect to the parameter is obtained. Furthermore, we establish an index formula for elliptic pseudodifferential operators on the real line periodic at infinity. The contribution of infinity to the index formula is given by the constructed $\eta$-invariant. Finally, we compute $\eta$-invariants of differential operators in terms of the spectrum of their monodromy matrices.
@article{EMJ_2021_12_3_a6,
     author = {A. Yu. Savin and K. N. Zhuikov},
     title = {$\eta${-Invariant} and index for operators on the real line periodic at infinity},
     journal = {Eurasian mathematical journal},
     pages = {57--77},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - K. N. Zhuikov
TI  - $\eta$-Invariant and index for operators on the real line periodic at infinity
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 57
EP  - 77
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/
LA  - en
ID  - EMJ_2021_12_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A K. N. Zhuikov
%T $\eta$-Invariant and index for operators on the real line periodic at infinity
%J Eurasian mathematical journal
%D 2021
%P 57-77
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/
%G en
%F EMJ_2021_12_3_a6
A. Yu. Savin; K. N. Zhuikov. $\eta$-Invariant and index for operators on the real line periodic at infinity. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 57-77. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/