$\eta$-Invariant and index for operators on the real line periodic at infinity
Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 57-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define $\eta$-invariants for periodic pseudodifferential operators on the real line and establish their main properties. In particular, it is proved that the $\eta$-invariant satisfies logarithmic property and a formula for the derivative of the $\eta$-invariant of an operator family with respect to the parameter is obtained. Furthermore, we establish an index formula for elliptic pseudodifferential operators on the real line periodic at infinity. The contribution of infinity to the index formula is given by the constructed $\eta$-invariant. Finally, we compute $\eta$-invariants of differential operators in terms of the spectrum of their monodromy matrices.
@article{EMJ_2021_12_3_a6,
     author = {A. Yu. Savin and K. N. Zhuikov},
     title = {$\eta${-Invariant} and index for operators on the real line periodic at infinity},
     journal = {Eurasian mathematical journal},
     pages = {57--77},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - K. N. Zhuikov
TI  - $\eta$-Invariant and index for operators on the real line periodic at infinity
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 57
EP  - 77
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/
LA  - en
ID  - EMJ_2021_12_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A K. N. Zhuikov
%T $\eta$-Invariant and index for operators on the real line periodic at infinity
%J Eurasian mathematical journal
%D 2021
%P 57-77
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/
%G en
%F EMJ_2021_12_3_a6
A. Yu. Savin; K. N. Zhuikov. $\eta$-Invariant and index for operators on the real line periodic at infinity. Eurasian mathematical journal, Tome 12 (2021) no. 3, pp. 57-77. http://geodesic.mathdoc.fr/item/EMJ_2021_12_3_a6/

[1] A. Antonevich, A. Lebedev, Functional differential equations. I. $C^*$-theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, Harlow, Longman, 1994 | Zbl

[2] M. Atiyah, V. Patodi, I. Singer, “Spectral asymmetry and Riemannian geometry I, II, III”, Proc. Math. Cambridge Philos. Soc., 77 (1975), 43–69 ; 78 (1976), 405–432 ; 79 (1976), 71–99 | DOI | Zbl | DOI | DOI | Zbl

[3] M. F. Atiyah, “Elliptic operators, discrete groups, von Neumann algebras”, Astérisque, 32–33, 1976, 43–72 | Zbl

[4] G. Bateman, A. Erdélyi, Higher transcendental functions, Nauka, M., 1973 (in Russian)

[5] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | Zbl

[6] B. Blackadar, K-theory for operator algebras, Second edition, Cambridge University Press, Cambridge, 1998 | Zbl

[7] G. Bogveradze, L. P. Castro, “On the Fredholm property and index of Wiener-Hopf plus/minus Hankel operators with piecewise almost periodic symbols”, Appl. Math. Inform. Mech., 12 (2007), 25–40 ; 119–120 | Zbl

[8] G. Bogveradze, L. P. Castro, “On the Fredholm index of matrix Wiener-Hopf plus/minus Hankel operators with semi-almost periodic symbols”, Oper. Theory Adv. Appl., 181 (2008), 143–158 | Zbl

[9] A. Böttcher, Yu. I. Karlovich, I. M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Birkhäuser, Basel, 2002 | Zbl

[10] B. V. Fedosov, B. W. Schulze, N. Tarkhanov, “The index of higher order operators on singular surfaces”, Pacific J. of Math., 191 (1999), 25–48 | DOI | Zbl

[11] H. Inoue, S. Richard, “Index theorems for Fredholm, semi-Fredholm and almost-periodic operators: all in one example”, J. Noncommut. Geom., 13 (2019), 1359–1380 | DOI | Zbl

[12] Trudy Mosk. Mat. Obshch., 15 (1966), 400–451 | Zbl

[13] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53 (2016), 343–414 | DOI | Zbl

[14] M. Lesch, H. Moscovici, M. J. Pflaum, Connes-Chern character for manifolds with boundary and eta cochains, Mem. Amer. Math. Soc., 220, 2012, viii+92 pp.

[15] M. Lesch, M. Pflaum, “Traces on algebras of parameter dependent pseudodi erential operators and the eta-invariant”, Trans. Amer. Math. Soc., 352 (2000), 4911–4936 | DOI | Zbl

[16] R. Mazzeo, D. Pollack, K. Uhlenbeck, “Moduli spaces of singular Yamabe metrics”, J. Amer. Math. Soc., 9 (1996), 303–344 | DOI | Zbl

[17] S. T. Melo, “K-theory of pseudodifferential operators with semi-periodic symbols”, K-theory, 37 (2006), 235–248 | DOI | Zbl

[18] R. Melrose, “The eta invariant and families of pseudodifferential operators”, Math. Research Letters, 2 (1995), 541–561 | DOI | Zbl

[19] A. S. Mishchenko, “Banach algebras, pseudodifferential operators, and their application to K-theory”, Russ. Math. Surv., 34 (1979), 77–91 | DOI | Zbl

[20] T. Mrowka, D. Ruberman, N. Saveliev, “An index theorem for end-periodic operators”, Compositio Math., 152 (2016), 399–444 | DOI | Zbl

[21] V. S. Rabinovich, “On the algebra generated by pseudodi erential operators on $R^n$. Operators of multiplication by almost-periodic functions, and shift operators”, Sov. Math. Dokl., 25 (1982), 498–502 | Zbl

[22] B.-W. Schulze, B. Sternin, V. Shatalov, “On the index of di erential operators on manifolds with conical singularities”, Annals of Global Analysis and Geometry, 16 (1998), 141–172 | DOI | Zbl

[23] M. A. Shubin, “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russ. Math. Surv., 34 (1979), 109–157 | DOI | Zbl

[24] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin–Heidelberg, 1987 | Zbl

[25] C. H. Taubes, “Gauge theory on asymptotically periodic 4-manifolds”, J. Differential Geom., 25 (1987), 363–430 | DOI | Zbl