Optimal rearrangement-invariant Banach function range for the Hilbert transform
Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 90-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the optimal rearrangement-invariant Banach function range of the classical Hilbert transform acting on a rearrangement-invariant Banach function space. We also show the existence of such optimal range for the Lorentz and Marcinkiewicz spaces.
@article{EMJ_2021_12_2_a9,
     author = {K. S. Tulenov},
     title = {Optimal rearrangement-invariant {Banach} function range for the {Hilbert} transform},
     journal = {Eurasian mathematical journal},
     pages = {90--103},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a9/}
}
TY  - JOUR
AU  - K. S. Tulenov
TI  - Optimal rearrangement-invariant Banach function range for the Hilbert transform
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 90
EP  - 103
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a9/
LA  - en
ID  - EMJ_2021_12_2_a9
ER  - 
%0 Journal Article
%A K. S. Tulenov
%T Optimal rearrangement-invariant Banach function range for the Hilbert transform
%J Eurasian mathematical journal
%D 2021
%P 90-103
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a9/
%G en
%F EMJ_2021_12_2_a9
K. S. Tulenov. Optimal rearrangement-invariant Banach function range for the Hilbert transform. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 90-103. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a9/

[1] K. F. Andersen, “Discrete Hilbert transforms and rearrangement invariant sequence spaces”, Applicable analysis, 5 (1976), 193–200 | DOI | MR | Zbl

[2] C. Bennett, “A Hausdorff-Young theorem for rearrangement invariant spaces”, Pacific J. Math., 47 (1975), 311–328 | DOI | MR

[3] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, 1988 | MR | Zbl

[4] N. A. Bokayev, M. L. Goldman, G. Zh. Karshygina, “Criteria for embedding of generalized Bessel and Riesz potential spaces in rearrangement invariant spaces”, Eurasian Math. J., 10:2 (2019), 08–29 | DOI | MR

[5] D. Boyd, “The Hilbert transform on rearrangement-invariant spaces”, Can. J. Math., 19 (1967), 599–616 | DOI | MR | Zbl

[6] O. Delgado, J. Soria, “Optimal domain for the Hardy operator”, J. Funct. Anal., 244 (2007), 119–133 | DOI | MR | Zbl

[7] G. Curbera, W. J. Ricker, Can optimal rearrangement invariant Sobolev imbeddings be further extended?, Indiana Univ. Math. J., 56:3 (2007), 1479–1497 | DOI | MR | Zbl

[8] O. Delgado, “Rearrangement invariant optimal domain for monotone kernel operators”, Vector Measures, Integration and Related Topics, Operator Theory: Advances and Applications, 201, Birkhäuser, 2010, 149–158 | MR | Zbl

[9] D. E. Edmunds, R. Kerman, L. Pick, “Optimal Sobolev imbeddings involving rearrangement invariant quasinorms”, J. Funct. Anal., 170:2 (2000), 307–355 | DOI | MR | Zbl

[10] A. Kassymov, “Some weak geometric inequalities for the Riesz potential”, Eurasian Math. J., 11:3 (2020), 42–50 | DOI | MR | Zbl

[11] S. Krein, Y. Petunin, E. Semenov, Interpolation of linear operators, Amer. Math. Soc., Providence, R.I., 1982 | MR | Zbl

[12] J. Lindenstrauss, L. Tzafiri, Classical Banach spaces, v. II, Springer-Verlag, 1979 | MR | Zbl

[13] W. A. J. Luxemburg, “Rearrangement invariant Banach function spaces”, Proc. Sympos. in Analysis, Queen's Papers in Pure and Appl. Math., 10, 1967, 83–144

[14] K. V. Lykov, F. A. Sukochev, K. S. Tulenov, A. S. Usachev, “Optimal pairs of symmetric spaces for the Calderón type operators”, Pure and Applied Functional Analysis, 6:3 (2021), 631–649 | MR

[15] P. Meyer-Nieberg, Banach lattices, Springer-Verlag, 1991 | MR | Zbl

[16] G. Mockenhaupt, W. J. Ricker, “Optimal extension of the Hausdorff-Young inequality”, J. Reine Angew. Math., 620 (2008), 195–211 | MR | Zbl

[17] G. Mockenhaupt, W. J. Ricker, “Optimal extension of Fourier multiplier operators in $L_p(G)$”, Integral Equations Operator Theory, 68:4 (2010), 573–599 | DOI | MR | Zbl

[18] A. Nekvinda, L. Pick, “Optimal estimates for the Hardy averaging operator”, Math. Nachr., 283:2 (2010), 262–271 | DOI | MR | Zbl

[19] S. Okada, W. J. Ricker, E. A. Sánchez-Peŕez, Optimal domain and integral extension of operators acting in function spaces, Operator Theory: Advances and Applications, 180, Birkhäuser Verlag, 2008 | MR | Zbl

[20] J. Soria, P. Tradacete, “Optimal rearrangement invariant range for Hardy-type operators”, Proc. of the Royal Soc. of Edinburgh, 146A (2016), 865–893 | DOI | MR | Zbl

[21] J. Soria, P. Tradacete, “Characterization of the restricted type spaces $R(X)$”, Math. Ineq. Applic., 18 (2015), 295–319 | MR | Zbl

[22] F. Sukochev, K. Tulenov, D. Zanin, “The optimal range of the Calderón operator and its applications”, J. Funct. Anal., 277:10 (2019), 3513–3559 | DOI | MR | Zbl

[23] F. Sukochev, K. Tulenov, D. Zanin, “The boundedness of the Hilbert transformation from one rearrangement invariant Banach space into another and applications”, Bulletin des Sciences Mathématiques., 167 (2021), 102943 | DOI | MR | Zbl

[24] K. S. Tulenov, “The optimal symmetric quasi-Banach range of the discrete Hilbert transform”, Arch. Math., 113:6 (2019), 649–660 | DOI | MR | Zbl