Refinement of continuous forms of classical inequalities
Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 59-73

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we give refinements of the continuous forms of some classical inequalities i.e. of the inequalities which involve infinitely many functions instead of finitely many. We present new general results for such inequalities of Hölder-type and of Minkowski-type as well as for their reverses known as Popoviciu- and Bellman-type inequalities. Properties for related functionals are also established. As particular cases of these results we derive both well-known and new refinements of the corresponding classical inequalities for integrals and sums
@article{EMJ_2021_12_2_a6,
     author = {L. Nikolova and L.-E. Persson and S. Varo\v{s}anec},
     title = {Refinement of continuous forms of classical inequalities},
     journal = {Eurasian mathematical journal},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/}
}
TY  - JOUR
AU  - L. Nikolova
AU  - L.-E. Persson
AU  - S. Varošanec
TI  - Refinement of continuous forms of classical inequalities
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 59
EP  - 73
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/
LA  - en
ID  - EMJ_2021_12_2_a6
ER  - 
%0 Journal Article
%A L. Nikolova
%A L.-E. Persson
%A S. Varošanec
%T Refinement of continuous forms of classical inequalities
%J Eurasian mathematical journal
%D 2021
%P 59-73
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/
%G en
%F EMJ_2021_12_2_a6
L. Nikolova; L.-E. Persson; S. Varošanec. Refinement of continuous forms of classical inequalities. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 59-73. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/