Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_2_a6, author = {L. Nikolova and L.-E. Persson and S. Varo\v{s}anec}, title = {Refinement of continuous forms of classical inequalities}, journal = {Eurasian mathematical journal}, pages = {59--73}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/} }
TY - JOUR AU - L. Nikolova AU - L.-E. Persson AU - S. Varošanec TI - Refinement of continuous forms of classical inequalities JO - Eurasian mathematical journal PY - 2021 SP - 59 EP - 73 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/ LA - en ID - EMJ_2021_12_2_a6 ER -
L. Nikolova; L.-E. Persson; S. Varošanec. Refinement of continuous forms of classical inequalities. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 59-73. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/
[1] N. Dunford, J. Schwartz, Linear operators, General theory, v. I, Interscience Publishes, New York–London, 1958 | MR | Zbl
[2] I. Işcan, “New refinements for integral and sum forms of Hölder inequality”, J. Inequal. Appl., 304:2019 (2019) | MR | Zbl
[3] I. Işcan, “A new improvement of Hölder inequality via isotonic linear functionals”, AIMS Mathematics, 5:3 (2020), 1720–1728 | DOI | MR
[4] B. Ivanković, J. Pečarić, S. Varošanec, “Properties of the Minkowski type functionals”, Mediterr. J. Math., 8:4 (2011), 543–551 | DOI | MR | Zbl
[5] M. A. Khan, G. Pečarić, J. Pečarić, “New refinement of the Jensen inequality associated to certain functions with applications”, J. Inequal. Appl., 2020, 76(2020) | DOI | MR | Zbl
[6] E. G. Kwon, “Extension of Hölder's inequality (I)”, Bull. Austral. Math. Soc., 51 (1995), 369–375 | DOI | MR | Zbl
[7] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001 | DOI | MR | Zbl
[8] L. I. Nikolova, L. E. Persson, “Some properties of $X^p$ spaces”, Teubner Texte zur Matematik, 120, 1991, 174–185 | MR | Zbl
[9] L. Nikolova, L. E. Persson, S. Varošanec, “Continuous forms of classical inequalities”, Mediterr. J. Math., 13:5 (2016), 3483–3497 | DOI | MR | Zbl
[10] J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial ordering, and statistical applications, Academic press, 1992 | MR
[11] J. Pečarić, J. Perić, “Refinements of the integral form of Jensen's and the Lah-Ribarič inequalities and applications for Cziszár divergence”, J. Inequal. Appl., 108:2020 (2020) | MR
[12] N. T. Tleukhanova, K. K. Sadykova, “O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces”, Eurasian Math. J., 10:3 (2019), 68–83 | DOI | MR | Zbl