Refinement of continuous forms of classical inequalities
Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we give refinements of the continuous forms of some classical inequalities i.e. of the inequalities which involve infinitely many functions instead of finitely many. We present new general results for such inequalities of Hölder-type and of Minkowski-type as well as for their reverses known as Popoviciu- and Bellman-type inequalities. Properties for related functionals are also established. As particular cases of these results we derive both well-known and new refinements of the corresponding classical inequalities for integrals and sums
@article{EMJ_2021_12_2_a6,
     author = {L. Nikolova and L.-E. Persson and S. Varo\v{s}anec},
     title = {Refinement of continuous forms of classical inequalities},
     journal = {Eurasian mathematical journal},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/}
}
TY  - JOUR
AU  - L. Nikolova
AU  - L.-E. Persson
AU  - S. Varošanec
TI  - Refinement of continuous forms of classical inequalities
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 59
EP  - 73
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/
LA  - en
ID  - EMJ_2021_12_2_a6
ER  - 
%0 Journal Article
%A L. Nikolova
%A L.-E. Persson
%A S. Varošanec
%T Refinement of continuous forms of classical inequalities
%J Eurasian mathematical journal
%D 2021
%P 59-73
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/
%G en
%F EMJ_2021_12_2_a6
L. Nikolova; L.-E. Persson; S. Varošanec. Refinement of continuous forms of classical inequalities. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 59-73. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a6/

[1] N. Dunford, J. Schwartz, Linear operators, General theory, v. I, Interscience Publishes, New York–London, 1958 | MR | Zbl

[2] I. Işcan, “New refinements for integral and sum forms of Hölder inequality”, J. Inequal. Appl., 304:2019 (2019) | MR | Zbl

[3] I. Işcan, “A new improvement of Hölder inequality via isotonic linear functionals”, AIMS Mathematics, 5:3 (2020), 1720–1728 | DOI | MR

[4] B. Ivanković, J. Pečarić, S. Varošanec, “Properties of the Minkowski type functionals”, Mediterr. J. Math., 8:4 (2011), 543–551 | DOI | MR | Zbl

[5] M. A. Khan, G. Pečarić, J. Pečarić, “New refinement of the Jensen inequality associated to certain functions with applications”, J. Inequal. Appl., 2020, 76(2020) | DOI | MR | Zbl

[6] E. G. Kwon, “Extension of Hölder's inequality (I)”, Bull. Austral. Math. Soc., 51 (1995), 369–375 | DOI | MR | Zbl

[7] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001 | DOI | MR | Zbl

[8] L. I. Nikolova, L. E. Persson, “Some properties of $X^p$ spaces”, Teubner Texte zur Matematik, 120, 1991, 174–185 | MR | Zbl

[9] L. Nikolova, L. E. Persson, S. Varošanec, “Continuous forms of classical inequalities”, Mediterr. J. Math., 13:5 (2016), 3483–3497 | DOI | MR | Zbl

[10] J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial ordering, and statistical applications, Academic press, 1992 | MR

[11] J. Pečarić, J. Perić, “Refinements of the integral form of Jensen's and the Lah-Ribarič inequalities and applications for Cziszár divergence”, J. Inequal. Appl., 108:2020 (2020) | MR

[12] N. T. Tleukhanova, K. K. Sadykova, “O'Neil-type inequalities for convolutions in anisotropic Lorentz spaces”, Eurasian Math. J., 10:3 (2019), 68–83 | DOI | MR | Zbl