Modulus of continuity for Bessel type poteniial over Lorentz space
Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 10-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized Bessel potentials are constructed using convolutions of the generalized Bessel–McDonald kernels with functions belonging to a basic rearrangement invariant space. Under assumptions ensuring the embedding of potentials into the space of bounded continuous functions, differential properties of potentials are described by using the $k$-th order modulus of continuity in the uniform norm. In the paper, estimates are given for the $k$-th order modulus of continuity in the uniform norm in the case of the generalized Bessel potentials constructed over the basic weighted Lorentz space.
@article{EMJ_2021_12_2_a1,
     author = {N. H. Alkhalil},
     title = {Modulus of continuity for {Bessel} type poteniial over {Lorentz} space},
     journal = {Eurasian mathematical journal},
     pages = {10--18},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/}
}
TY  - JOUR
AU  - N. H. Alkhalil
TI  - Modulus of continuity for Bessel type poteniial over Lorentz space
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 10
EP  - 18
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/
LA  - en
ID  - EMJ_2021_12_2_a1
ER  - 
%0 Journal Article
%A N. H. Alkhalil
%T Modulus of continuity for Bessel type poteniial over Lorentz space
%J Eurasian mathematical journal
%D 2021
%P 10-18
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/
%G en
%F EMJ_2021_12_2_a1
N. H. Alkhalil. Modulus of continuity for Bessel type poteniial over Lorentz space. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 10-18. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl

[2] V. I. Burenkov, M. L. Goldman, “Calculation of the norm of a positive operator on the cone of monotone functions”, Proc. of the Steklov Inst. Math., 210 (1995), 65–89 | MR | Zbl

[3] M. L. Goldman, A. Malysheva, “Estimates of the uniform modulus of continuity for Bessel potentials”, Proc. of the Steklov Inst. Math., 283 (2013), 1–12 | DOI | MR

[4] M. L. Goldman, “Integral properties of generalized Bessel potentials”, Dokl. Math., 75:3 (2007), 361–366 | DOI | MR | Zbl

[5] M. L. Goldman, “On optimal embeddings of generalized Bessel and Riesz potentials”, Proc. of the Steklov Inst. Math., 269 (2010), 91–111 | DOI | MR | Zbl

[6] S.M. Nikol'skii, Approximation of functions of several variables and embedding theorems, Nauka, M., 1977 | MR

[7] E. T. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Mathematics, 96 (1990), 145–158 | DOI | MR | Zbl