Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_2_a1, author = {N. H. Alkhalil}, title = {Modulus of continuity for {Bessel} type poteniial over {Lorentz} space}, journal = {Eurasian mathematical journal}, pages = {10--18}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/} }
N. H. Alkhalil. Modulus of continuity for Bessel type poteniial over Lorentz space. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 10-18. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl
[2] V. I. Burenkov, M. L. Goldman, “Calculation of the norm of a positive operator on the cone of monotone functions”, Proc. of the Steklov Inst. Math., 210 (1995), 65–89 | MR | Zbl
[3] M. L. Goldman, A. Malysheva, “Estimates of the uniform modulus of continuity for Bessel potentials”, Proc. of the Steklov Inst. Math., 283 (2013), 1–12 | DOI | MR
[4] M. L. Goldman, “Integral properties of generalized Bessel potentials”, Dokl. Math., 75:3 (2007), 361–366 | DOI | MR | Zbl
[5] M. L. Goldman, “On optimal embeddings of generalized Bessel and Riesz potentials”, Proc. of the Steklov Inst. Math., 269 (2010), 91–111 | DOI | MR | Zbl
[6] S.M. Nikol'skii, Approximation of functions of several variables and embedding theorems, Nauka, M., 1977 | MR
[7] E. T. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Mathematics, 96 (1990), 145–158 | DOI | MR | Zbl