Modulus of continuity for Bessel type poteniial over Lorentz space
Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 10-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized Bessel potentials are constructed using convolutions of the generalized Bessel–McDonald kernels with functions belonging to a basic rearrangement invariant space. Under assumptions ensuring the embedding of potentials into the space of bounded continuous functions, differential properties of potentials are described by using the $k$-th order modulus of continuity in the uniform norm. In the paper, estimates are given for the $k$-th order modulus of continuity in the uniform norm in the case of the generalized Bessel potentials constructed over the basic weighted Lorentz space.
@article{EMJ_2021_12_2_a1,
     author = {N. H. Alkhalil},
     title = {Modulus of continuity for {Bessel} type poteniial over {Lorentz} space},
     journal = {Eurasian mathematical journal},
     pages = {10--18},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/}
}
TY  - JOUR
AU  - N. H. Alkhalil
TI  - Modulus of continuity for Bessel type poteniial over Lorentz space
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 10
EP  - 18
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/
LA  - en
ID  - EMJ_2021_12_2_a1
ER  - 
%0 Journal Article
%A N. H. Alkhalil
%T Modulus of continuity for Bessel type poteniial over Lorentz space
%J Eurasian mathematical journal
%D 2021
%P 10-18
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/
%G en
%F EMJ_2021_12_2_a1
N. H. Alkhalil. Modulus of continuity for Bessel type poteniial over Lorentz space. Eurasian mathematical journal, Tome 12 (2021) no. 2, pp. 10-18. http://geodesic.mathdoc.fr/item/EMJ_2021_12_2_a1/