Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 97-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for the one-dimensional systems of the kinetic Carleman and Godunov–Sultangazin equations with bounded energy and periodic initial data. We present theorems on the global existence of a solution of the Cauchy problem for the Carleman and Godunov–Sultangazin systems.
@article{EMJ_2021_12_1_a9,
     author = {S. A. Dukhnovskii},
     title = {Global existence theorems of a solution of the {Cauchy} problem for systems of the kinetic {Carleman} and {Godunov--Sultangazin} equations},
     journal = {Eurasian mathematical journal},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 97
EP  - 102
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/
LA  - en
ID  - EMJ_2021_12_1_a9
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations
%J Eurasian mathematical journal
%D 2021
%P 97-102
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/
%G en
%F EMJ_2021_12_1_a9
S. A. Dukhnovskii. Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 97-102. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/

[1] S. A. Dukhnovskii, “On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz. Mat. Nauki, 21:1 (2017), 7–41 (In Russian) | DOI | Zbl

[2] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russ. Math. Surv., 26:3 (1971), 1–56 | DOI | MR

[3] O. V. Ilyin, “Investigation of the existence of solutions and of the stability of the Carleman kinetic system”, Comput. Math. Math. Phys., 47:12 (2007), 1990–2001 | DOI | MR

[4] S. Kawashima, “The asymptotic equivalence of the Broadwell model equation and its Navier-Stokes model equation”, Japan J. Math., 7:1 (1981), 1–43 | DOI | MR | Zbl

[5] N. B. Maslova, “Mathematical methods for studying the Boltzmann equation”, St. Petersburg Math. J., 3:1 (1992), 1–43 | MR

[6] T. Platkowski, R. Illner, “Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory”, SIAM Review, 30:2 (1988), 213–255 | DOI | MR | Zbl

[7] E. V. Radkevich, “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, J. Math. Sci., 202:5 (2014), 735–768 | DOI | MR | Zbl

[8] E. V. Radkevich, O. A. Vasil'eva, S. A. Dukhnovskii, “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015), 296–323 | DOI | MR | Zbl

[9] E. V. Radkevich, O. A. Vasil'eva, “Generation of chaotic dynamics and local equilibrium for the Carleman equation”, J. Math. Sci., 224:5 (2017), 763–795 | DOI | MR

[10] O. A. Vasil'eva, S. A. Dukhnovskii, E. V. Radkevich, “On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453 | MR

[11] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov, related equations, Elsevier, Amsterdam, 2011 | MR | Zbl

[12] V. V. Vedenyapin, “On global solvability of the Cauchy problem for some discrete models of Boltzmann's equation”, Sov. Math., Dokl., 15 (1974), 398–401 | MR | Zbl