Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_1_a9, author = {S. A. Dukhnovskii}, title = {Global existence theorems of a solution of the {Cauchy} problem for systems of the kinetic {Carleman} and {Godunov--Sultangazin} equations}, journal = {Eurasian mathematical journal}, pages = {97--102}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/} }
TY - JOUR AU - S. A. Dukhnovskii TI - Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations JO - Eurasian mathematical journal PY - 2021 SP - 97 EP - 102 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/ LA - en ID - EMJ_2021_12_1_a9 ER -
%0 Journal Article %A S. A. Dukhnovskii %T Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations %J Eurasian mathematical journal %D 2021 %P 97-102 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/ %G en %F EMJ_2021_12_1_a9
S. A. Dukhnovskii. Global existence theorems of a solution of the Cauchy problem for systems of the kinetic Carleman and Godunov--Sultangazin equations. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 97-102. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a9/
[1] S. A. Dukhnovskii, “On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz. Mat. Nauki, 21:1 (2017), 7–41 (In Russian) | DOI | Zbl
[2] S. K. Godunov, U. M. Sultangazin, “On discrete models of the kinetic Boltzmann equation”, Russ. Math. Surv., 26:3 (1971), 1–56 | DOI | MR
[3] O. V. Ilyin, “Investigation of the existence of solutions and of the stability of the Carleman kinetic system”, Comput. Math. Math. Phys., 47:12 (2007), 1990–2001 | DOI | MR
[4] S. Kawashima, “The asymptotic equivalence of the Broadwell model equation and its Navier-Stokes model equation”, Japan J. Math., 7:1 (1981), 1–43 | DOI | MR | Zbl
[5] N. B. Maslova, “Mathematical methods for studying the Boltzmann equation”, St. Petersburg Math. J., 3:1 (1992), 1–43 | MR
[6] T. Platkowski, R. Illner, “Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory”, SIAM Review, 30:2 (1988), 213–255 | DOI | MR | Zbl
[7] E. V. Radkevich, “On the large-time behavior of solutions to the Cauchy problem for a 2-dimensional discrete kinetic equation”, J. Math. Sci., 202:5 (2014), 735–768 | DOI | MR | Zbl
[8] E. V. Radkevich, O. A. Vasil'eva, S. A. Dukhnovskii, “Local equilibrium of the Carleman equation”, J. Math. Sci., 207:2 (2015), 296–323 | DOI | MR | Zbl
[9] E. V. Radkevich, O. A. Vasil'eva, “Generation of chaotic dynamics and local equilibrium for the Carleman equation”, J. Math. Sci., 224:5 (2017), 763–795 | DOI | MR
[10] O. A. Vasil'eva, S. A. Dukhnovskii, E. V. Radkevich, “On the nature of local equilibrium in the Carleman and Godunov-Sultangazin equations”, J. Math. Sci., 235:4 (2018), 393–453 | MR
[11] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov, related equations, Elsevier, Amsterdam, 2011 | MR | Zbl
[12] V. V. Vedenyapin, “On global solvability of the Cauchy problem for some discrete models of Boltzmann's equation”, Sov. Math., Dokl., 15 (1974), 398–401 | MR | Zbl