Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_1_a8, author = {O. G. Avsyankin}, title = {On integral operators with homogeneous kernels in {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {92--96}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a8/} }
O. G. Avsyankin. On integral operators with homogeneous kernels in Morrey spaces. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 92-96. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a8/
[1] O. G. Avsyankin, “$C^*$-algebra of integral operators with homogeneous kernels and oscillating coefficients”, Mathematical Notes, 99:3 (2016), 345–353 | DOI | MR | Zbl
[2] O. G. Avsyankin, “Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces”, Russian Mathematics, 61:11 (2017), 1–9 | DOI | MR | Zbl
[3] O. G. Avsyankin, “Invertibility of multidimensional integral operators with bihomogeneous kernels”, Mathematical Notes, 108:2 (2020), 277–281 | DOI | MR | Zbl
[4] O. G. Avsyankin, “Compactness of some operators of convolution type in generalized Morrey spaces”, Mathematical Notes, 104:3 (2018), 331–338 | DOI | MR | Zbl
[5] O. G. Avsyankin, N. K. Karapetyants, “On the pseudospectra of multidimensional integral operators with homogeneous kernels of degreen”, Siberian Mathematical Journal, 44:6 (2003), 935–950 | DOI | MR | Zbl
[6] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl
[7] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | MR | Zbl
[8] V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Proc. Steklov Inst. Math., 293 (2016), 107–126 | DOI | MR | Zbl
[9] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Mathematical Journal, 7:2 (2016), 92–99 | MR | Zbl
[10] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Commutative normed rings, Fizmatgiz, M., 1960 (in Russian) | MR | Zbl
[11] A. Karapetyants, E. Liflyand, “Defining Hausdorff operators on Euclidean spaces”, Mathematical Methods in the Applied Sciences, 43:16, Special Issue: Operator Theory and Harmonic Analysis (2020), 9487–9498 | DOI | MR | Zbl
[12] N. Karapetiants, S. Samko, Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl
[13] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR
[14] S. M. Umarkhadzhiev, “Integral operators with homogeneous kernels in grand Lebesgue spaces”, Mathematical Notes, 102:5 (2017), 710–721 | DOI | MR | Zbl