On integral operators with homogeneous kernels in Morrey spaces
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider integral operators with homogeneous kernels in Morrey spaces. For such operators we obtain sufficient conditions of their boundedness. Moreover, for an operator, which is the sum of the identity operator and an operator with a homogeneous kernel, we prove the invertibility criterion.
@article{EMJ_2021_12_1_a8,
     author = {O. G. Avsyankin},
     title = {On integral operators with homogeneous kernels in {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {92--96},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a8/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On integral operators with homogeneous kernels in Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 92
EP  - 96
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a8/
LA  - en
ID  - EMJ_2021_12_1_a8
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On integral operators with homogeneous kernels in Morrey spaces
%J Eurasian mathematical journal
%D 2021
%P 92-96
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a8/
%G en
%F EMJ_2021_12_1_a8
O. G. Avsyankin. On integral operators with homogeneous kernels in Morrey spaces. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 92-96. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a8/

[1] O. G. Avsyankin, “$C^*$-algebra of integral operators with homogeneous kernels and oscillating coefficients”, Mathematical Notes, 99:3 (2016), 345–353 | DOI | MR | Zbl

[2] O. G. Avsyankin, “Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces”, Russian Mathematics, 61:11 (2017), 1–9 | DOI | MR | Zbl

[3] O. G. Avsyankin, “Invertibility of multidimensional integral operators with bihomogeneous kernels”, Mathematical Notes, 108:2 (2020), 277–281 | DOI | MR | Zbl

[4] O. G. Avsyankin, “Compactness of some operators of convolution type in generalized Morrey spaces”, Mathematical Notes, 104:3 (2018), 331–338 | DOI | MR | Zbl

[5] O. G. Avsyankin, N. K. Karapetyants, “On the pseudospectra of multidimensional integral operators with homogeneous kernels of degreen”, Siberian Mathematical Journal, 44:6 (2003), 935–950 | DOI | MR | Zbl

[6] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl

[7] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | MR | Zbl

[8] V. I. Burenkov, T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Proc. Steklov Inst. Math., 293 (2016), 107–126 | DOI | MR | Zbl

[9] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Mathematical Journal, 7:2 (2016), 92–99 | MR | Zbl

[10] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Commutative normed rings, Fizmatgiz, M., 1960 (in Russian) | MR | Zbl

[11] A. Karapetyants, E. Liflyand, “Defining Hausdorff operators on Euclidean spaces”, Mathematical Methods in the Applied Sciences, 43:16, Special Issue: Operator Theory and Harmonic Analysis (2020), 9487–9498 | DOI | MR | Zbl

[12] N. Karapetiants, S. Samko, Equations with involutive operators, Birkhäuser, Boston–Basel–Berlin, 2001 | MR | Zbl

[13] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR

[14] S. M. Umarkhadzhiev, “Integral operators with homogeneous kernels in grand Lebesgue spaces”, Mathematical Notes, 102:5 (2017), 710–721 | DOI | MR | Zbl