One-phase spherical Stefan problem with temperature dependent coefficients
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 49-56
Voir la notice de l'article provenant de la source Math-Net.Ru
The one-phase spherical Stefan problem with coefficients depending on the temperature is considered. The method of solving is based on the similarity principle, which enables us to reduce this problem to a nonlinear ordinary differential equation, and then to an equivalent nonlinear integral equation of the Volterra type. It is shown that the obtained integral operator is a contraction operator and a unique solution exists.
@article{EMJ_2021_12_1_a4,
author = {S. N. Kharin and T. A. Nauryz},
title = {One-phase spherical {Stefan} problem with temperature dependent coefficients},
journal = {Eurasian mathematical journal},
pages = {49--56},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/}
}
TY - JOUR AU - S. N. Kharin AU - T. A. Nauryz TI - One-phase spherical Stefan problem with temperature dependent coefficients JO - Eurasian mathematical journal PY - 2021 SP - 49 EP - 56 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/ LA - en ID - EMJ_2021_12_1_a4 ER -
S. N. Kharin; T. A. Nauryz. One-phase spherical Stefan problem with temperature dependent coefficients. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 49-56. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/