Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2021_12_1_a4, author = {S. N. Kharin and T. A. Nauryz}, title = {One-phase spherical {Stefan} problem with temperature dependent coefficients}, journal = {Eurasian mathematical journal}, pages = {49--56}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/} }
TY - JOUR AU - S. N. Kharin AU - T. A. Nauryz TI - One-phase spherical Stefan problem with temperature dependent coefficients JO - Eurasian mathematical journal PY - 2021 SP - 49 EP - 56 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/ LA - en ID - EMJ_2021_12_1_a4 ER -
S. N. Kharin; T. A. Nauryz. One-phase spherical Stefan problem with temperature dependent coefficients. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 49-56. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/
[1] J. Bollati, D. A. Tarzia, Explicit solution for Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face using Kummer functions, 28 Oct. 2016, arXiv: 1610.09338v1 [math/AP] | MR
[2] A. C. Briozzo, M. F. Natale, D. A. Tarzia, “Existence of an exact solution for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskii's method”, Nonlinear Analysis, 67 (2007), 1989–1998 | DOI | MR | Zbl
[3] A. C. Briozzo, M. F. Natale, “A nonlinear supercooled Stefan problem”, Z. Angew. Math. Phys., 2 (2017), 46–68 | DOI | MR | Zbl
[4] R. Holm, Electric contacts. Theory, application, Fourth Edition, Springer Verlag, Berlin–New York, 2000
[5] M. J. Huntul, D. Lesnic, “An inverse problem of finding the time-dependent thermal conductivity from boundary data”, Int. Commun. Heat Mass Transfer, 85 (2017), 147–154 | DOI
[6] S. N. Kharin, Mathematical models of phenomena in electrical contacts, The Russian Academy of Sciences, Siberian Branch, A.P. Ershov Institute of Informatics Systems, Novosibirsk, 2017, 193 pp.
[7] A. Kumar, A. K. Singh, Rajeev, “A Stefan problem with temperature and time dependent thermal conductivity”, Journal of King Saud University of Science, 2018, March, 32–41 | DOI