One-phase spherical Stefan problem with temperature dependent coefficients
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The one-phase spherical Stefan problem with coefficients depending on the temperature is considered. The method of solving is based on the similarity principle, which enables us to reduce this problem to a nonlinear ordinary differential equation, and then to an equivalent nonlinear integral equation of the Volterra type. It is shown that the obtained integral operator is a contraction operator and a unique solution exists.
@article{EMJ_2021_12_1_a4,
     author = {S. N. Kharin and T. A. Nauryz},
     title = {One-phase spherical {Stefan} problem with temperature dependent coefficients},
     journal = {Eurasian mathematical journal},
     pages = {49--56},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/}
}
TY  - JOUR
AU  - S. N. Kharin
AU  - T. A. Nauryz
TI  - One-phase spherical Stefan problem with temperature dependent coefficients
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 49
EP  - 56
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/
LA  - en
ID  - EMJ_2021_12_1_a4
ER  - 
%0 Journal Article
%A S. N. Kharin
%A T. A. Nauryz
%T One-phase spherical Stefan problem with temperature dependent coefficients
%J Eurasian mathematical journal
%D 2021
%P 49-56
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/
%G en
%F EMJ_2021_12_1_a4
S. N. Kharin; T. A. Nauryz. One-phase spherical Stefan problem with temperature dependent coefficients. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 49-56. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a4/

[1] J. Bollati, D. A. Tarzia, Explicit solution for Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face using Kummer functions, 28 Oct. 2016, arXiv: 1610.09338v1 [math/AP] | MR

[2] A. C. Briozzo, M. F. Natale, D. A. Tarzia, “Existence of an exact solution for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskii's method”, Nonlinear Analysis, 67 (2007), 1989–1998 | DOI | MR | Zbl

[3] A. C. Briozzo, M. F. Natale, “A nonlinear supercooled Stefan problem”, Z. Angew. Math. Phys., 2 (2017), 46–68 | DOI | MR | Zbl

[4] R. Holm, Electric contacts. Theory, application, Fourth Edition, Springer Verlag, Berlin–New York, 2000

[5] M. J. Huntul, D. Lesnic, “An inverse problem of finding the time-dependent thermal conductivity from boundary data”, Int. Commun. Heat Mass Transfer, 85 (2017), 147–154 | DOI

[6] S. N. Kharin, Mathematical models of phenomena in electrical contacts, The Russian Academy of Sciences, Siberian Branch, A.P. Ershov Institute of Informatics Systems, Novosibirsk, 2017, 193 pp.

[7] A. Kumar, A. K. Singh, Rajeev, “A Stefan problem with temperature and time dependent thermal conductivity”, Journal of King Saud University of Science, 2018, March, 32–41 | DOI