On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces
Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 103-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the problem of trigonometric multipliers in the sequence spaces $\lambda_{p,q}$. Embedding theorems of the Lorentz and Besov spaces into the space of trigonometric Fourier series multipliers are formulated.
@article{EMJ_2021_12_1_a10,
     author = {N. T. Tleukhanova and A. Bakhyt},
     title = {On trigonometric {Fourier} series multipliers in $\lambda_{p,q}$ spaces},
     journal = {Eurasian mathematical journal},
     pages = {103--106},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a10/}
}
TY  - JOUR
AU  - N. T. Tleukhanova
AU  - A. Bakhyt
TI  - On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces
JO  - Eurasian mathematical journal
PY  - 2021
SP  - 103
EP  - 106
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a10/
LA  - en
ID  - EMJ_2021_12_1_a10
ER  - 
%0 Journal Article
%A N. T. Tleukhanova
%A A. Bakhyt
%T On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces
%J Eurasian mathematical journal
%D 2021
%P 103-106
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a10/
%G en
%F EMJ_2021_12_1_a10
N. T. Tleukhanova; A. Bakhyt. On trigonometric Fourier series multipliers in $\lambda_{p,q}$ spaces. Eurasian mathematical journal, Tome 12 (2021) no. 1, pp. 103-106. http://geodesic.mathdoc.fr/item/EMJ_2021_12_1_a10/

[1] M. Sh. Birman, M. Z. Solomjak, “Quantitative analysis in Sobolev-s imbedding theorems and applications to spectral theory”, Proceedings of the Tenth Mathematical School, Summer School (Kaciveli/Nalchik, 1972), Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1974, 5–189 (in Russian) | MR

[2] S. L. Edel'shtein, “Bounded convolutions in $L_p(Z_m)$ and the smoothness of the symbol of the operator”, Math. Notes, 22(1977):2, 978–984 | MR

[3] I. I. Hirshman, “On multiplier transformations”, Duke Math. J., 26 (1959), 221–242 | MR

[4] A. Jumabayeva, E. Smailov, N. Tleukhanova, “On spectral properties of the modified convolution operator”, J. Inequal. Appl., 2012:146 (2012), 1–15 | MR

[5] G. E. Karadzhov, “Trigonometrical problems of multipliers”, Constructive Function Theory'81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 82–86 | MR

[6] Proc. Steklov Inst. Math., 1999, 231–236 | MR | Zbl

[7] Funct. Anal. Appl., 34:2 (2000), 151–153 | DOI | DOI | MR | Zbl

[8] E. Nursultanov, L. Sarybekova, N. Tleukhanova, “Some new Fourier multiplier results of Lizorkin and Hörmander types”, Functional analysis in interdisciplinary applications, Springer Proc. Math. Stat., 216, Springer, Cham, 2017, 58–82 | DOI | MR | Zbl

[9] L.-E. Persson, L. Sarybekova, N. Tleukhanova, “A Lizorkin theorem on Fourier series multipliers for strong regular systems”, Analysis for science, engineering and beyond, Springer Proc. Math., 6, Springer, Heidelberg, 2012, 305–317 | DOI | MR | Zbl

[10] L. O. Sarybekova, T. V. Tararykova, N. T. Tleukhanova, “On a generalization of the Lizorkin theorem on Fourier multipliers”, Math. Inequal. Appl., 13:3 (2010), 613–624 | MR | Zbl

[11] S. B. Stechkin, “About bilinear form”, Dokl. Akad. Nauk SSSR, 71:3 (1950), 237–240 (in Russian) | MR | Zbl