Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_4_a8, author = {A. A. Vasil'eva}, title = {Order estimates for the {Kolmogorov} widths of weighted {Sobolev} classes with restrictions on derivatives}, journal = {Eurasian mathematical journal}, pages = {95--100}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/} }
TY - JOUR AU - A. A. Vasil'eva TI - Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives JO - Eurasian mathematical journal PY - 2020 SP - 95 EP - 100 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/ LA - en ID - EMJ_2020_11_4_a8 ER -
A. A. Vasil'eva. Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 95-100. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/
[1] M. S. Aitenova, L. K. Kussainova, “On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. I”, Mat. Zh., 2:1 (2002), 3–9 | MR | Zbl
[2] M. S. Aitenova, L. K. Kussainova, “On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. II”, Mat. Zh., 2:2 (2002), 7–14 | MR | Zbl
[3] O. V. Besov, “Sobolev's embedding theorem for a domain with irregular boundary”, Sb. Math., 192:3 (2001), 323–346 | DOI | MR | Zbl
[4] I. V. Boykov, “Approximation of some classes of functions by local splines”, Comput. Math. Math. Phys., 38:1 (1998), 21–29 | MR
[5] M. Bricchi, “Existence and properties of h-sets”, Georgian Math. J., 9:1 (2002), 13–32 | MR | Zbl
[6] L. Caso, R. D'Ambrosio, “Weighted spaces and weighted norm inequalities on irregular domains”, J. Appr. Theory, 167 (2013), 42–58 | DOI | MR | Zbl
[7] E. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388 | DOI | MR
[8] L. K. Kussainova, “Embedding the weighted Sobolev space $W_p^l(\Omega; v)$ in the space $L_p(\Omega; \omega)$”, Sb. Math., 191:2 (2000), 275–290 | DOI | MR
[9] P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights”, Math. USSR-Sb., 36:3 (1980), 331–349 | DOI | MR | Zbl
[10] P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights. II”, Math. USSR-Sb., 40:1 (1981), 51–77 | DOI | MR | Zbl
[11] P. I. Lizorkin, M. Otelbaev, “Estimates of approximate numbers of the imbedding operators for spaces of Sobolev type with weights”, Proc. Steklov Inst. Math., 170 (1987), 245–266 | MR | Zbl
[12] T. Mieth, “Entropy and approximation numbers of embeddings of weighted Sobolev spaces”, J. Appr. Theory, 192 (2015), 250–272 | DOI | MR | Zbl
[13] T. Mieth, “Entropy and approximation numbers of weighted Sobolev spaces via bracketing”, J. Funct. Anal., 270 (2016), 4322–4339 | DOI | MR | Zbl
[14] K. Mynbaev, M. Otelbaev, Weighted function spaces and the spectrum of differential operators, Nauka, M., 1988 | MR
[15] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48 (1993), 103–116 | DOI | MR | Zbl
[16] V. D. Stepanov, E. P. Ushakova, “On integral operators with variable limits of integration”, Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl
[17] Encycl. Math. Sci., 14, 1990, 93–243 | MR
[18] H. Triebel, Interpolation theory. Function spaces. Differential operators, Mir, M., 1980 | MR | Zbl
[19] H. Triebel, “Entropy and approximation numbers of limiting embeddings, an approach via Hardy inequalities and quadratic forms”, J. Approx. Theory, 164:1 (2012), 31–46 | DOI | MR | Zbl
[20] A. A. Vasil'eva, “Widths of function classes on sets with tree-like structure”, J. Appr. Theory, 192 (2015), 19–59 | DOI | MR | Zbl