Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on the derivatives of order $r$ and $0$ are obtained. The functions are defined on a John domain or on $\mathbb{R}^d$.
@article{EMJ_2020_11_4_a8,
     author = {A. A. Vasil'eva},
     title = {Order estimates for the {Kolmogorov} widths of weighted {Sobolev} classes with restrictions on derivatives},
     journal = {Eurasian mathematical journal},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 95
EP  - 100
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/
LA  - en
ID  - EMJ_2020_11_4_a8
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives
%J Eurasian mathematical journal
%D 2020
%P 95-100
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/
%G en
%F EMJ_2020_11_4_a8
A. A. Vasil'eva. Order estimates for the Kolmogorov widths of weighted Sobolev classes with restrictions on derivatives. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 95-100. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a8/

[1] M. S. Aitenova, L. K. Kussainova, “On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. I”, Mat. Zh., 2:1 (2002), 3–9 | MR | Zbl

[2] M. S. Aitenova, L. K. Kussainova, “On the asymptotics of the distribution of approximation numbers of embeddings of weighted Sobolev classes. II”, Mat. Zh., 2:2 (2002), 7–14 | MR | Zbl

[3] O. V. Besov, “Sobolev's embedding theorem for a domain with irregular boundary”, Sb. Math., 192:3 (2001), 323–346 | DOI | MR | Zbl

[4] I. V. Boykov, “Approximation of some classes of functions by local splines”, Comput. Math. Math. Phys., 38:1 (1998), 21–29 | MR

[5] M. Bricchi, “Existence and properties of h-sets”, Georgian Math. J., 9:1 (2002), 13–32 | MR | Zbl

[6] L. Caso, R. D'Ambrosio, “Weighted spaces and weighted norm inequalities on irregular domains”, J. Appr. Theory, 167 (2013), 42–58 | DOI | MR | Zbl

[7] E. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388 | DOI | MR

[8] L. K. Kussainova, “Embedding the weighted Sobolev space $W_p^l(\Omega; v)$ in the space $L_p(\Omega; \omega)$”, Sb. Math., 191:2 (2000), 275–290 | DOI | MR

[9] P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights”, Math. USSR-Sb., 36:3 (1980), 331–349 | DOI | MR | Zbl

[10] P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights. II”, Math. USSR-Sb., 40:1 (1981), 51–77 | DOI | MR | Zbl

[11] P. I. Lizorkin, M. Otelbaev, “Estimates of approximate numbers of the imbedding operators for spaces of Sobolev type with weights”, Proc. Steklov Inst. Math., 170 (1987), 245–266 | MR | Zbl

[12] T. Mieth, “Entropy and approximation numbers of embeddings of weighted Sobolev spaces”, J. Appr. Theory, 192 (2015), 250–272 | DOI | MR | Zbl

[13] T. Mieth, “Entropy and approximation numbers of weighted Sobolev spaces via bracketing”, J. Funct. Anal., 270 (2016), 4322–4339 | DOI | MR | Zbl

[14] K. Mynbaev, M. Otelbaev, Weighted function spaces and the spectrum of differential operators, Nauka, M., 1988 | MR

[15] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48 (1993), 103–116 | DOI | MR | Zbl

[16] V. D. Stepanov, E. P. Ushakova, “On integral operators with variable limits of integration”, Proc. Steklov Inst. Math., 232 (2001), 290–309 | MR | Zbl

[17] Encycl. Math. Sci., 14, 1990, 93–243 | MR

[18] H. Triebel, Interpolation theory. Function spaces. Differential operators, Mir, M., 1980 | MR | Zbl

[19] H. Triebel, “Entropy and approximation numbers of limiting embeddings, an approach via Hardy inequalities and quadratic forms”, J. Approx. Theory, 164:1 (2012), 31–46 | DOI | MR | Zbl

[20] A. A. Vasil'eva, “Widths of function classes on sets with tree-like structure”, J. Appr. Theory, 192 (2015), 19–59 | DOI | MR | Zbl