Complexes in relative elliptic theory
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a pair $(M, X)$, where $X$ is a smooth submanifold in a smooth manifold $M$, we consider complexes of operators associated with this pair. We describe the notion of ellipticity in this situation and prove the Fredholm property for elliptic complexes. As applications, we consider the relative de Rham complex and Dolbeault complex.
@article{EMJ_2020_11_4_a3,
     author = {N. R. Izvarina and A. Yu. Savin},
     title = {Complexes in relative elliptic theory},
     journal = {Eurasian mathematical journal},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a3/}
}
TY  - JOUR
AU  - N. R. Izvarina
AU  - A. Yu. Savin
TI  - Complexes in relative elliptic theory
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 45
EP  - 57
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a3/
LA  - en
ID  - EMJ_2020_11_4_a3
ER  - 
%0 Journal Article
%A N. R. Izvarina
%A A. Yu. Savin
%T Complexes in relative elliptic theory
%J Eurasian mathematical journal
%D 2020
%P 45-57
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a3/
%G en
%F EMJ_2020_11_4_a3
N. R. Izvarina; A. Yu. Savin. Complexes in relative elliptic theory. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 45-57. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a3/

[1] M. F. Atiyah, R. Bott, “A Lefschetz fixed point formula for elliptic complexes. I”, Ann. of Math., 86 (1967), 374–407 | DOI | MR | Zbl

[2] M. F. Atiyah, R. Bott, “A Lefschetz fixed point formula for elliptic complexes. II”, Applications. Ann. Math., 87 (1968), 451–491 | MR

[3] C. Bohlen, R. Schulz, Quantization on manifolds with an embedded submanifold, 2017, arXiv: 1710.02294

[4] R. Bott, L. Tu, Differential forms in algebraic topology, Springer-Verlag, Berlin-Heidelberg-New York, 1982 | MR | Zbl

[5] L. Boutet de Monvel, “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[6] A. V. Brenner, M. A. Shubin, “Atiyah-Bott-Lefschetz formula for elliptic complexes on manifolds with boundary”, J. Soviet Math., 64:4 (1993), 1069–1111 | DOI

[7] A. S. Dynin, “Elliptic boundary-value problems for pseudodifferential complexes”, Func. Anal. Appl., 6 (1972), 67–68 | DOI | MR | Zbl

[8] Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, 1981 | MR | Zbl

[9] C. Godbillon, Éléments de topologie algébrique, Hermann, Paris, 1971 | MR

[10] V. E. Nazaikinskii, B. Yu. Sternin, “On the Green operator in relative elliptic theory”, Dokl. Math., 68:1 (2003), 57–60 | MR | Zbl

[11] V. Nazaikinskii, B. Sternin, “Relative elliptic theory”, Aspects of Boundary Problems in Analysis and Geometry, Oper. Theory Adv. Appl., 151, Birkhäuser, Basel, 2004, 495–560 | DOI | MR | Zbl

[12] S. P. Novikov, B. Yu. Sternin, “Traces of elliptic operators on submanifolds and K-theory”, Soviet Math. Dokl., 7:5 (1966), 1373–1376 | MR | Zbl

[13] S. P. Novikov, B. Yu. Sternin, “Elliptic operators, submanifolds”, Soviet Math. Dokl., 7:6 (1966), 1508–1512 | MR | Zbl

[14] U. Pillat, B. W. Schulze, “Elliptische randwertprobleme für komplexe von pseudodifferentialoperatoren”, Math. Nachr., 94 (1980), 173–210 | DOI | MR | Zbl

[15] S. Rempel, B. W. Schulze, Index theory of elliptic boundary problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl

[16] E. Schrohe, “A short introduction to Boutet de Monvel's calculus”, Approaches to singular analysis, Oper. Theory Adv. Appl., 125, Birkhäuser, 2001, 85–116 | DOI | MR | Zbl

[17] B. W. Schulze, J. Seiler, “Elliptic complexes on manifolds with boundary”, J. Geom. Anal., 29:1 (2019), 656–706 | DOI | MR | Zbl

[18] S. L. Sobolev, “On a boundary value problem for polyharmonic equation”, Matem. Sbornik, 2:3 (1937), 467–500 (in Russian)

[19] B. Yu. Sternin, V. E. Shatalov, “Relative elliptic theory and the Sobolev problems”, Sb. Math., 187:11 (1996), 1691–1720 | DOI | MR | Zbl

[20] B. Yu. Sternin, “Elliptic and parabolic problems on manifolds with boundary consisting of components of different dimension”, Trans. Moscow Math. Soc., 15 (1966), 387–429 | MR | Zbl

[21] B. Yu. Sternin, “Elliptic morphisms (riggings of elliptic operators) for submanifolds with singularities”, Soviet Math. Dokl., 12 (1971), 1338–1343 | MR | Zbl

[22] B. Yu. Sternin, “Relative elliptic theory and the S. L. Sobolev problem”, Soviet Math. Dokl., 17:5 (1976), 1306–1309 | MR | Zbl

[23] T. Suwa, “Cech-Dolbeault cohomology and the $\overline\partial$-Thom class”, Singularities-Niigata-Toyama 2007, Adv. Stud. Pure Math., 56, Math. Soc. Japan, Tokyo, 2009, 321–340 | DOI | MR | Zbl

[24] T. Suwa, Relative Dolbeault cohomology, 2019, arXiv: 1903.04710

[25] N. Tardini, “Relative Cech-Dolbeault homology and applications”, Ann. Mat. Pura Appl., 199:3 (2020), 985–995 | DOI | MR | Zbl

[26] M. I. Vishik, G. I. Eskin, “Elliptic equations in convolution in a bounded domain and their applications”, Russ. Math. Surv., 22 (1967), 13–75 | DOI | MR | Zbl