Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_4_a3, author = {N. R. Izvarina and A. Yu. Savin}, title = {Complexes in relative elliptic theory}, journal = {Eurasian mathematical journal}, pages = {45--57}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a3/} }
N. R. Izvarina; A. Yu. Savin. Complexes in relative elliptic theory. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 45-57. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a3/
[1] M. F. Atiyah, R. Bott, “A Lefschetz fixed point formula for elliptic complexes. I”, Ann. of Math., 86 (1967), 374–407 | DOI | MR | Zbl
[2] M. F. Atiyah, R. Bott, “A Lefschetz fixed point formula for elliptic complexes. II”, Applications. Ann. Math., 87 (1968), 451–491 | MR
[3] C. Bohlen, R. Schulz, Quantization on manifolds with an embedded submanifold, 2017, arXiv: 1710.02294
[4] R. Bott, L. Tu, Differential forms in algebraic topology, Springer-Verlag, Berlin-Heidelberg-New York, 1982 | MR | Zbl
[5] L. Boutet de Monvel, “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl
[6] A. V. Brenner, M. A. Shubin, “Atiyah-Bott-Lefschetz formula for elliptic complexes on manifolds with boundary”, J. Soviet Math., 64:4 (1993), 1069–1111 | DOI
[7] A. S. Dynin, “Elliptic boundary-value problems for pseudodifferential complexes”, Func. Anal. Appl., 6 (1972), 67–68 | DOI | MR | Zbl
[8] Transl. Math. Monogr., 52, Amer. Math. Soc., Providence, 1981 | MR | Zbl
[9] C. Godbillon, Éléments de topologie algébrique, Hermann, Paris, 1971 | MR
[10] V. E. Nazaikinskii, B. Yu. Sternin, “On the Green operator in relative elliptic theory”, Dokl. Math., 68:1 (2003), 57–60 | MR | Zbl
[11] V. Nazaikinskii, B. Sternin, “Relative elliptic theory”, Aspects of Boundary Problems in Analysis and Geometry, Oper. Theory Adv. Appl., 151, Birkhäuser, Basel, 2004, 495–560 | DOI | MR | Zbl
[12] S. P. Novikov, B. Yu. Sternin, “Traces of elliptic operators on submanifolds and K-theory”, Soviet Math. Dokl., 7:5 (1966), 1373–1376 | MR | Zbl
[13] S. P. Novikov, B. Yu. Sternin, “Elliptic operators, submanifolds”, Soviet Math. Dokl., 7:6 (1966), 1508–1512 | MR | Zbl
[14] U. Pillat, B. W. Schulze, “Elliptische randwertprobleme für komplexe von pseudodifferentialoperatoren”, Math. Nachr., 94 (1980), 173–210 | DOI | MR | Zbl
[15] S. Rempel, B. W. Schulze, Index theory of elliptic boundary problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl
[16] E. Schrohe, “A short introduction to Boutet de Monvel's calculus”, Approaches to singular analysis, Oper. Theory Adv. Appl., 125, Birkhäuser, 2001, 85–116 | DOI | MR | Zbl
[17] B. W. Schulze, J. Seiler, “Elliptic complexes on manifolds with boundary”, J. Geom. Anal., 29:1 (2019), 656–706 | DOI | MR | Zbl
[18] S. L. Sobolev, “On a boundary value problem for polyharmonic equation”, Matem. Sbornik, 2:3 (1937), 467–500 (in Russian)
[19] B. Yu. Sternin, V. E. Shatalov, “Relative elliptic theory and the Sobolev problems”, Sb. Math., 187:11 (1996), 1691–1720 | DOI | MR | Zbl
[20] B. Yu. Sternin, “Elliptic and parabolic problems on manifolds with boundary consisting of components of different dimension”, Trans. Moscow Math. Soc., 15 (1966), 387–429 | MR | Zbl
[21] B. Yu. Sternin, “Elliptic morphisms (riggings of elliptic operators) for submanifolds with singularities”, Soviet Math. Dokl., 12 (1971), 1338–1343 | MR | Zbl
[22] B. Yu. Sternin, “Relative elliptic theory and the S. L. Sobolev problem”, Soviet Math. Dokl., 17:5 (1976), 1306–1309 | MR | Zbl
[23] T. Suwa, “Cech-Dolbeault cohomology and the $\overline\partial$-Thom class”, Singularities-Niigata-Toyama 2007, Adv. Stud. Pure Math., 56, Math. Soc. Japan, Tokyo, 2009, 321–340 | DOI | MR | Zbl
[24] T. Suwa, Relative Dolbeault cohomology, 2019, arXiv: 1903.04710
[25] N. Tardini, “Relative Cech-Dolbeault homology and applications”, Ann. Mat. Pura Appl., 199:3 (2020), 985–995 | DOI | MR | Zbl
[26] M. I. Vishik, G. I. Eskin, “Elliptic equations in convolution in a bounded domain and their applications”, Russ. Math. Surv., 22 (1967), 13–75 | DOI | MR | Zbl