Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients
Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 8-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

By using the subspace of functions from homogeneous spaces with integrals decreasing at infinity we define new classes of functions almost periodic at infinity. We obtain spectral criteria for a function to be almost periodic at infinity and asymptotically almost periodic (with respect to the chosen subspace). These results are used for deriving criteria for almost periodicity at infinity of bounded solutions to differential equations with unbounded operator coefficients. In addition, for the new class of asymptotically finite-dimensional operator semigroups we prove the almost periodicity at infinity of their orbits.
@article{EMJ_2020_11_4_a0,
     author = {A. G. Baskakov and V. E. Strukov and I. I. Strukova},
     title = {Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients},
     journal = {Eurasian mathematical journal},
     pages = {8--24},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - V. E. Strukov
AU  - I. I. Strukova
TI  - Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 8
EP  - 24
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/
LA  - en
ID  - EMJ_2020_11_4_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A V. E. Strukov
%A I. I. Strukova
%T Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients
%J Eurasian mathematical journal
%D 2020
%P 8-24
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/
%G en
%F EMJ_2020_11_4_a0
A. G. Baskakov; V. E. Strukov; I. I. Strukova. Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 8-24. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/

[1] W. Arendt, C. J. K. Batty, “Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line”, Bull. London Math. Soc., 31 (1999), 291–304 | DOI | MR | Zbl

[2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2011 | MR | Zbl

[3] B. Basit, “Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem”, Semigroup Forum, 54:1 (1994), 58–74 | DOI | MR

[4] A. G. Baskakov, Some problems of the theory of vector almost periodic functions, Diss. Kand. Fiz. Mat. Nauk, Voronezh, 1973 (in Russian) | MR

[5] Math. Notes, 24:2 (1978), 606–612 | DOI | MR

[6] Math. of the USSR Sbornik, 52:1 (1985), 63–90 | DOI | MR | Zbl | Zbl

[7] J. Math. Sci., 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[8] A. G. Baskakov, Harmonic analysis in Banach modules and the spectral theory of linear operators, Publishing house of Voronezh State University, Voronezh, 2016 (in Russian) | MR

[9] Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[10] Math. Notes, 97:2 (2015), 164–178 | DOI | DOI | MR | MR | Zbl

[11] Math. Notes, 92:5 (2012), 587–605 | DOI | DOI | MR | Zbl

[12] Russian Math. (Iz. VUZ), 58:7 (2014), 1–10 | DOI | MR | Zbl

[13] Izv. Math., 69:3 (2005), 439–486 | DOI | MR | Zbl

[14] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI | MR | Zbl

[15] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR | Zbl

[16] Sib. Math. J., 59:2 (2018), 231–242 | DOI | MR | Zbl

[17] S. Bochner, J. V. Neumann, “Almost periodic functions in groups. II”, Trans. Amer. Math. Soc., 37:1 (1935), 21–50 | MR

[18] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96 (1956), 1–66 | DOI | MR | Zbl

[19] E. Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[20] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. II, Springer-Verlag, New York, 1994 | MR

[21] B. M. Levitan, V. V. Zhikov, Almost-periodic functions and differential equations, Publishing House of Moscow State University, M., 1978 (in Russian) | MR

[22] Yu. Lyubich, Q. Ph. Vu, “Asymptotic stability of linear differential equations in Banach spaces”, Studia Math., 88:1 (1988), 37–42 | DOI | MR | Zbl

[23] H. Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968 | MR | Zbl

[24] S. L. Sobolev, “On almost periodicity for solutions of a wave equation. I-III”, Dokl. Akad. Nauk SSSR, 48:8 (1945), 570–573

[25] Sib. Math. J., 52:6 (2011), 1104–1107 | DOI | MR | MR | Zbl

[26] V. E. Strukov, I. I. Strukova, “About slowly varying and periodic at infinity functions from homogeneous spaces and harmonic distributions”, News of Voronezh State University, ser. Fizika. Matematika, 4 (2018), 195–205 (in Russian)

[27] Sib. Math. J., 57:1 (2016), 145–154 | DOI | MR | Zbl