Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_4_a0, author = {A. G. Baskakov and V. E. Strukov and I. I. Strukova}, title = {Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients}, journal = {Eurasian mathematical journal}, pages = {8--24}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/} }
TY - JOUR AU - A. G. Baskakov AU - V. E. Strukov AU - I. I. Strukova TI - Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients JO - Eurasian mathematical journal PY - 2020 SP - 8 EP - 24 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/ LA - en ID - EMJ_2020_11_4_a0 ER -
%0 Journal Article %A A. G. Baskakov %A V. E. Strukov %A I. I. Strukova %T Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients %J Eurasian mathematical journal %D 2020 %P 8-24 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/ %G en %F EMJ_2020_11_4_a0
A. G. Baskakov; V. E. Strukov; I. I. Strukova. Almost periodic at infinity functions from homogeneous spaces as solutions to differential equations with unbounded operator coefficients. Eurasian mathematical journal, Tome 11 (2020) no. 4, pp. 8-24. http://geodesic.mathdoc.fr/item/EMJ_2020_11_4_a0/
[1] W. Arendt, C. J. K. Batty, “Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half-line”, Bull. London Math. Soc., 31 (1999), 291–304 | DOI | MR | Zbl
[2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2011 | MR | Zbl
[3] B. Basit, “Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem”, Semigroup Forum, 54:1 (1994), 58–74 | DOI | MR
[4] A. G. Baskakov, Some problems of the theory of vector almost periodic functions, Diss. Kand. Fiz. Mat. Nauk, Voronezh, 1973 (in Russian) | MR
[5] Math. Notes, 24:2 (1978), 606–612 | DOI | MR
[6] Math. of the USSR Sbornik, 52:1 (1985), 63–90 | DOI | MR | Zbl | Zbl
[7] J. Math. Sci., 137:4 (2006), 4885–5036 | DOI | MR | Zbl
[8] A. G. Baskakov, Harmonic analysis in Banach modules and the spectral theory of linear operators, Publishing house of Voronezh State University, Voronezh, 2016 (in Russian) | MR
[9] Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[10] Math. Notes, 97:2 (2015), 164–178 | DOI | DOI | MR | MR | Zbl
[11] Math. Notes, 92:5 (2012), 587–605 | DOI | DOI | MR | Zbl
[12] Russian Math. (Iz. VUZ), 58:7 (2014), 1–10 | DOI | MR | Zbl
[13] Izv. Math., 69:3 (2005), 439–486 | DOI | MR | Zbl
[14] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI | MR | Zbl
[15] A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR | Zbl
[16] Sib. Math. J., 59:2 (2018), 231–242 | DOI | MR | Zbl
[17] S. Bochner, J. V. Neumann, “Almost periodic functions in groups. II”, Trans. Amer. Math. Soc., 37:1 (1935), 21–50 | MR
[18] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96 (1956), 1–66 | DOI | MR | Zbl
[19] E. Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[20] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. II, Springer-Verlag, New York, 1994 | MR
[21] B. M. Levitan, V. V. Zhikov, Almost-periodic functions and differential equations, Publishing House of Moscow State University, M., 1978 (in Russian) | MR
[22] Yu. Lyubich, Q. Ph. Vu, “Asymptotic stability of linear differential equations in Banach spaces”, Studia Math., 88:1 (1988), 37–42 | DOI | MR | Zbl
[23] H. Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968 | MR | Zbl
[24] S. L. Sobolev, “On almost periodicity for solutions of a wave equation. I-III”, Dokl. Akad. Nauk SSSR, 48:8 (1945), 570–573
[25] Sib. Math. J., 52:6 (2011), 1104–1107 | DOI | MR | MR | Zbl
[26] V. E. Strukov, I. I. Strukova, “About slowly varying and periodic at infinity functions from homogeneous spaces and harmonic distributions”, News of Voronezh State University, ser. Fizika. Matematika, 4 (2018), 195–205 (in Russian)