On the solution to a two-dimensional heat conduction problem in a degenerate domain
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a degenerate domain, namely, the inverted cone, we consider a boundary value problem of heat conduction. For this problem the solvability theorems are established in weighted spaces of essentially bounded functions. The proofs of the theorems are based on the results of the solvability for a nonhomogeneous integral equation of the third kind. The problem under study is reduced to the study of this integral equation using the representation of the solution to the boundary value problem in the form of a sum of constructed thermal potentials.
@article{EMJ_2020_11_3_a7,
     author = {M. T. Jenaliyev and M. I. Ramazanov and M. T. Kosmakova and Zh. M. Tuleutaeva},
     title = {On the solution to a two-dimensional heat conduction problem in a degenerate domain},
     journal = {Eurasian mathematical journal},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/}
}
TY  - JOUR
AU  - M. T. Jenaliyev
AU  - M. I. Ramazanov
AU  - M. T. Kosmakova
AU  - Zh. M. Tuleutaeva
TI  - On the solution to a two-dimensional heat conduction problem in a degenerate domain
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 89
EP  - 94
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/
LA  - en
ID  - EMJ_2020_11_3_a7
ER  - 
%0 Journal Article
%A M. T. Jenaliyev
%A M. I. Ramazanov
%A M. T. Kosmakova
%A Zh. M. Tuleutaeva
%T On the solution to a two-dimensional heat conduction problem in a degenerate domain
%J Eurasian mathematical journal
%D 2020
%P 89-94
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/
%G en
%F EMJ_2020_11_3_a7
M. T. Jenaliyev; M. I. Ramazanov; M. T. Kosmakova; Zh. M. Tuleutaeva. On the solution to a two-dimensional heat conduction problem in a degenerate domain. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 89-94. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/

[1] M. M. Amangaliyeva, M. T. Jenaliyev, M. T. Kosmakova, M. I. Ramazanov, “On one homogeneous problem for the heat equation in an infinite angular domain”, Sib. Math. J., 56:6, 982–995 | DOI | MR

[2] M. M. Amangaliyeva, M. T. Jenaliyev, M. T. Kosmakova, M. I. Ramazanov, “On a Volterra equation of the second kind with “incompressible” kernel”, Adv. Difference Equ., 71 (2015), 1–14 | DOI | MR

[3] M. Jenaliyev, M. Ramazanov, M. Yergaliyev, “On the coefficient inverse problem of heat conduction in a degenerating domain”, Appl. Anal., 2018, 1–16 | DOI | MR

[4] M. Jenaliyev, M. Ramazanov, “On a homogeneous parabolic problem in an infinite corner domain”, Filomat, 32:3 (2018), 965–974 | DOI | MR

[5] M. N. Kalimoldayev, M. T. Jenaliyev, “To the theory of modeling of electric power and electric contact systems”, Open Engineering, 6:1 (2016), 455–463 | DOI

[6] E. I. Kim, V. T. Omel'chenko, S. N. Kharin, Mathematical models of thermal processes in electrical contacts, Nauka, Alma-Ata, 1977 (in Russian) | MR

[7] V. B. Korotkov, “On the integral operators of the third kind”, Sib. Math. J., 44:5, 829–832 | DOI | MR | Zbl

[8] A. I. Kozhanov, “Study of the solvability of some Volterra-type integral and integro-differential equations of third kind”, Dokl. Math., 97:1 (2018), 38–41 | DOI | MR | Zbl

[9] A. D. Polyanin, Handbook of linear equations of mathematical physics, Fizmatlit, M., 2001 (in Russian) | Zbl

[10] A. N. Tikhonov, A. A. Samarskii, Equations of the mathematical physics, 4th edn, Nauka, M., 1972 (in Russian) | MR