Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2020_11_3_a7, author = {M. T. Jenaliyev and M. I. Ramazanov and M. T. Kosmakova and Zh. M. Tuleutaeva}, title = {On the solution to a two-dimensional heat conduction problem in a degenerate domain}, journal = {Eurasian mathematical journal}, pages = {89--94}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/} }
TY - JOUR AU - M. T. Jenaliyev AU - M. I. Ramazanov AU - M. T. Kosmakova AU - Zh. M. Tuleutaeva TI - On the solution to a two-dimensional heat conduction problem in a degenerate domain JO - Eurasian mathematical journal PY - 2020 SP - 89 EP - 94 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/ LA - en ID - EMJ_2020_11_3_a7 ER -
%0 Journal Article %A M. T. Jenaliyev %A M. I. Ramazanov %A M. T. Kosmakova %A Zh. M. Tuleutaeva %T On the solution to a two-dimensional heat conduction problem in a degenerate domain %J Eurasian mathematical journal %D 2020 %P 89-94 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/ %G en %F EMJ_2020_11_3_a7
M. T. Jenaliyev; M. I. Ramazanov; M. T. Kosmakova; Zh. M. Tuleutaeva. On the solution to a two-dimensional heat conduction problem in a degenerate domain. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 89-94. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a7/
[1] M. M. Amangaliyeva, M. T. Jenaliyev, M. T. Kosmakova, M. I. Ramazanov, “On one homogeneous problem for the heat equation in an infinite angular domain”, Sib. Math. J., 56:6, 982–995 | DOI | MR
[2] M. M. Amangaliyeva, M. T. Jenaliyev, M. T. Kosmakova, M. I. Ramazanov, “On a Volterra equation of the second kind with “incompressible” kernel”, Adv. Difference Equ., 71 (2015), 1–14 | DOI | MR
[3] M. Jenaliyev, M. Ramazanov, M. Yergaliyev, “On the coefficient inverse problem of heat conduction in a degenerating domain”, Appl. Anal., 2018, 1–16 | DOI | MR
[4] M. Jenaliyev, M. Ramazanov, “On a homogeneous parabolic problem in an infinite corner domain”, Filomat, 32:3 (2018), 965–974 | DOI | MR
[5] M. N. Kalimoldayev, M. T. Jenaliyev, “To the theory of modeling of electric power and electric contact systems”, Open Engineering, 6:1 (2016), 455–463 | DOI
[6] E. I. Kim, V. T. Omel'chenko, S. N. Kharin, Mathematical models of thermal processes in electrical contacts, Nauka, Alma-Ata, 1977 (in Russian) | MR
[7] V. B. Korotkov, “On the integral operators of the third kind”, Sib. Math. J., 44:5, 829–832 | DOI | MR | Zbl
[8] A. I. Kozhanov, “Study of the solvability of some Volterra-type integral and integro-differential equations of third kind”, Dokl. Math., 97:1 (2018), 38–41 | DOI | MR | Zbl
[9] A. D. Polyanin, Handbook of linear equations of mathematical physics, Fizmatlit, M., 2001 (in Russian) | Zbl
[10] A. N. Tikhonov, A. A. Samarskii, Equations of the mathematical physics, 4th edn, Nauka, M., 1972 (in Russian) | MR