Some weak geometric inequalities for the Riesz potential
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 42-50

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove that the first eigenvalue of the Riesz potential is weakly maximised in a quasi-ball among all Haar measurable sets on homogeneous Lie groups. It is an analogue of the classical Rayleigh–Faber–Krahn inequality for the Riesz potential. We also prove a weak version of the Hong–Krahn–Szegö inequality for the Riesz potential on homogeneous Lie groups.
@article{EMJ_2020_11_3_a3,
     author = {A. Kassymov},
     title = {Some weak geometric inequalities for the {Riesz} potential},
     journal = {Eurasian mathematical journal},
     pages = {42--50},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/}
}
TY  - JOUR
AU  - A. Kassymov
TI  - Some weak geometric inequalities for the Riesz potential
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 42
EP  - 50
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/
LA  - en
ID  - EMJ_2020_11_3_a3
ER  - 
%0 Journal Article
%A A. Kassymov
%T Some weak geometric inequalities for the Riesz potential
%J Eurasian mathematical journal
%D 2020
%P 42-50
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/
%G en
%F EMJ_2020_11_3_a3
A. Kassymov. Some weak geometric inequalities for the Riesz potential. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 42-50. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/