Some weak geometric inequalities for the Riesz potential
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 42-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove that the first eigenvalue of the Riesz potential is weakly maximised in a quasi-ball among all Haar measurable sets on homogeneous Lie groups. It is an analogue of the classical Rayleigh–Faber–Krahn inequality for the Riesz potential. We also prove a weak version of the Hong–Krahn–Szegö inequality for the Riesz potential on homogeneous Lie groups.
@article{EMJ_2020_11_3_a3,
     author = {A. Kassymov},
     title = {Some weak geometric inequalities for the {Riesz} potential},
     journal = {Eurasian mathematical journal},
     pages = {42--50},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/}
}
TY  - JOUR
AU  - A. Kassymov
TI  - Some weak geometric inequalities for the Riesz potential
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 42
EP  - 50
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/
LA  - en
ID  - EMJ_2020_11_3_a3
ER  - 
%0 Journal Article
%A A. Kassymov
%T Some weak geometric inequalities for the Riesz potential
%J Eurasian mathematical journal
%D 2020
%P 42-50
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/
%G en
%F EMJ_2020_11_3_a3
A. Kassymov. Some weak geometric inequalities for the Riesz potential. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 42-50. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a3/

[1] W. Beckner, “On Lie groups and hyperbolic symmetry-From Kunze-Stein phenomena to Riesz potentials”, Nonlinear analysis, 26 (2015), 394–414 | DOI | MR

[2] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006 | DOI | MR | Zbl

[3] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982 | MR | Zbl

[4] T. Sh. Kal'menov, A. Kassymov, D. Suragan, “Isoperimetric inequalities for the Cauchy-Dirichlet heat operator”, Filomat, 32:3 (2018), 885–892 | DOI | MR

[5] T. Sh. Kal'menov, A. Kassymov, D. Suragan, “Isoperimetric inequalities for the heat potential operator”, Filomat, 32:3 (2018), 903–910 | DOI | MR

[6] A. Kassymov, M. Ruzhansky, D. Suragan, “Hardy-Littlewood-Sobolev and Stein-Weiss inequalities on homogeneous Lie groups”, Integral Transforms and Special Functions, 30:8 (2019), 643–655 | DOI | MR | Zbl

[7] A. Kassymov, M. Ruzhansky, D. Suragan, “Fractional logarithmic inequalities and blow-up results with logarithmic nonlinearity on homogeneous groups”, Nonlinear Differ. Equ. Appl., 27:7 (2020) | MR | Zbl

[8] A. Kassymov, M. Sadybekov, D. Suragan, “On Isoperimetric inequalities for the Cauchy-Robin heat operator”, Mathematical Modelling of Natural Phenomena, 12:3 (2017), 114–118 | DOI | MR | Zbl

[9] A. Kassymov, D. Suragan, “Lyapunov-type inequalities for the fractional p-sub-Laplacian”, Adv. Oper. Theory, 5 (2020), 435–452 | DOI | MR | Zbl

[10] A. Kassymov, D. Suragan, “Some spectral geometry inequalities for generalized heat potential operators”, Complex Analysis and Operator Theory, 11:6 (2017), 1371–1385 | DOI | MR | Zbl

[11] A. D. Ionescu, “Rearrangement inequalities on semisimple Lie groups”, Mathematische Annalen, 332:4 (2005), 739–758 | DOI | MR | Zbl

[12] A. D. Ionescu, “An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators”, Ann. of Math., 152 (2000), 259–275 | DOI | MR | Zbl

[13] A. D. Ionescu, The Kunze-Stein phenomenon, http://web.math.princeton.edu/conference/stein2011/Talks/stein/Ionescu

[14] G. Rozenblum, M. Ruzhansky, D. Suragan, “Isoperimetric inequalities for Schatten norms of Riesz potentials”, Journal of Functional Analysis, 271 (2016), 224–239 | DOI | MR | Zbl

[15] M. Ruzhansky, D. Suragan, Hardy inequalities on homogeneous groups: 100 years of Hardy inequalities, Progress in Math., 327, Birkhäuser, 2019, 588 pp. (open access book) | DOI | MR | Zbl

[16] M. Ruzhansky, D. Suragan, “Schatten's norm for convolution type integral operator”, Russ. Math. Surv., 71 (2016), 157–158 | DOI | MR

[17] M. Ruzhansky, D. Suragan, “On first and second eigenvalues of Riesz transforms in spherical and hyperbolic geometries”, Bulletin of Mathematical Sciences, 6 (2016), 325–334 | DOI | MR | Zbl

[18] M. Ruzhansky, D. Suragan, “Isoperimetric inequalities for the logarithmic potential operator”, Journal of Mathematical Analysis and Applications, 434 (2016), 1676–1689 | DOI | MR | Zbl