Characterization of polygroups by IP-subsets
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 35-41

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define the concept of IP-subsets of a polygroup and single polygroups. Indeed, if $\langle P,\circ,1,{}^{-1} \rangle$ is a polygroup of order $n$, then a non-empty subset $Q$ of $P$ is an IP-subset if $\langle Q,*,e,{}^I \rangle$ is a polygroup, where for every $x, y\in Q$, $x*y=(x\circ y)\cap Q$. If $P$ has no IP-subset of order $n-1$, then it is single. We show that every non-single polygroup of order $n$ can be constructed from a polygroup of order $n-1$. In particular, we prove that there exist exactly $7$ single polygroups of order less than $5$.
@article{EMJ_2020_11_3_a2,
     author = {D. Heidari and B. Davvaz},
     title = {Characterization of polygroups by {IP-subsets}},
     journal = {Eurasian mathematical journal},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/}
}
TY  - JOUR
AU  - D. Heidari
AU  - B. Davvaz
TI  - Characterization of polygroups by IP-subsets
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 35
EP  - 41
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/
LA  - en
ID  - EMJ_2020_11_3_a2
ER  - 
%0 Journal Article
%A D. Heidari
%A B. Davvaz
%T Characterization of polygroups by IP-subsets
%J Eurasian mathematical journal
%D 2020
%P 35-41
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/
%G en
%F EMJ_2020_11_3_a2
D. Heidari; B. Davvaz. Characterization of polygroups by IP-subsets. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 35-41. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/