Characterization of polygroups by IP-subsets
Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define the concept of IP-subsets of a polygroup and single polygroups. Indeed, if $\langle P,\circ,1,{}^{-1} \rangle$ is a polygroup of order $n$, then a non-empty subset $Q$ of $P$ is an IP-subset if $\langle Q,*,e,{}^I \rangle$ is a polygroup, where for every $x, y\in Q$, $x*y=(x\circ y)\cap Q$. If $P$ has no IP-subset of order $n-1$, then it is single. We show that every non-single polygroup of order $n$ can be constructed from a polygroup of order $n-1$. In particular, we prove that there exist exactly $7$ single polygroups of order less than $5$.
@article{EMJ_2020_11_3_a2,
     author = {D. Heidari and B. Davvaz},
     title = {Characterization of polygroups by {IP-subsets}},
     journal = {Eurasian mathematical journal},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/}
}
TY  - JOUR
AU  - D. Heidari
AU  - B. Davvaz
TI  - Characterization of polygroups by IP-subsets
JO  - Eurasian mathematical journal
PY  - 2020
SP  - 35
EP  - 41
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/
LA  - en
ID  - EMJ_2020_11_3_a2
ER  - 
%0 Journal Article
%A D. Heidari
%A B. Davvaz
%T Characterization of polygroups by IP-subsets
%J Eurasian mathematical journal
%D 2020
%P 35-41
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/
%G en
%F EMJ_2020_11_3_a2
D. Heidari; B. Davvaz. Characterization of polygroups by IP-subsets. Eurasian mathematical journal, Tome 11 (2020) no. 3, pp. 35-41. http://geodesic.mathdoc.fr/item/EMJ_2020_11_3_a2/

[1] H. Aghabozorgi, B. Davvaz, M. Jafarpour, “Solvable polygroups and derived subpolygroups”, Comm. Algebra, 41:8 (2013), 3098–3107 | DOI | MR | Zbl

[2] P. Bonansinga, P. Corsini, “Sugli omomorfismi di semi-ipergruppi e di ipergruppi”, Boll. Un. Mat. Italy, 1-B (1982), 717–727 | MR | Zbl

[3] S. D. Comer, “Extension of polygroups by polygroups and their representations using colour schemes”, Universal Algebra and Lattice Theory, Lecture notes in Meth., 1004, 1982, 91–103 | DOI | MR

[4] S. D. Comer, “Polygroups derived from cogroups”, J. of Algebra, 89 (1984), 397–405 | DOI | MR | Zbl

[5] S. D. Comer, Multi-valued algebras and their graphical representations, No 29409, Math. Comp. Sci. Dep. the Citadel., Charleston, South Carolina, July, 1986

[6] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Tricesimo, 1993 | MR | Zbl

[7] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academical Publications, Dordrecht, 2003 | MR | Zbl

[8] B. Davvaz, Semihypergroup theory, Elsevier/Academic Press, London, 2016, viii+156 pp. | MR | Zbl

[9] B. Davvaz, “Isomorphism theorems of polygroups”, Bull. Malays. Math. Sci. Soc., 33 (2010), 385–392 | MR | Zbl

[10] B. Davvaz, Polygroup theory, related systems, World Scientific Publishing Co Pte. Ltd., Hackensack, NJ, 2013 | MR | Zbl

[11] M. Dresher, O. Ore, “Theory of multigroups”, Amer. J. Math., 60 (1938), 705–733 | DOI | MR

[12] D. Heidari, B. Davvaz, S. M. S. Modarres, “Topological polygroups”, Bull. Malays. Math. Sci. Soc., 39 (2016), 707–721 | DOI | MR | Zbl

[13] D. Heidari, M. Amooshahi, B. Davvaz, “Generalized Cayley graphs over polygroups”, Comm. Algebra, Comm. Algebra, 47:5 (2019), 2209–2219 | DOI | MR | Zbl

[14] S. Ioulidis, “Polygroups et certains de leurs properietes”, Bull. Greek Math. Soc., 22 (1981), 95–104 | MR | Zbl

[15] R. D. Maddux, Relation algebras, Studies in Logic and the Foundations of Mathematics, 150, Elsevier B.V., Amsterdam, 2006 | MR | Zbl

[16] F. Marty, “Sur une generalization de la notion de group”, 8th Congress Math. Scandenaves (Stockholm, 1934), 45–49